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ABSTRACT 

A major drawback in the operation of mechanical heart valve prostheses is 

thrombus formation in the near valve region potentially due to the high shear stresses 

present in the leakage jet flows through small gaps between leaflets and the valve 

housing. Detailed flow analysis in this region during the valve closure phase is of interest 

in understanding the relationship between shear stress and platelet activation.  

An efficient Cartesian grid method is developed for the simulation of 

incompressible flows around stationary and moving three-dimensional immersed solid 

bodies as well as fluid-fluid interfaces. The embedded boundaries are represented using 

Levelsets and treated in a sharp manner without the use of source terms to represent 

boundary effects. The resulting algorithm is implemented in a straightforward manner in 

three dimensions and retains global second-order accuracy. When dealing with problems 

of disparate length scales encountered in many applications, it is necessary to resolve the 

physically important length scales adequately to ensure accuracy of the solution. Fixed 

grid methods often have the disadvantage of heavy mesh requirement for well resolved 

calculations. A quadtree based adaptive local mesh refinement scheme is developed to 

complement the sharp interface Cartesian grid method scheme for efficient and optimized 

calculations. Detailed timing and accuracy data is presented for a variety of benchmark 

problems involving moving boundaries.  

The above method is then applied to modeling heart valve closure and predicting 

thrombus formation. Leaflet motion is calculated dynamically based on the fluid forces 

acting on it employing a fluid-structure interaction algorithm. Platelets are modeled and 

tracked as point particles by a Lagrangian particle tracking method which incorporates 
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the hemodynamic forces on the particles. Leaflet closure dynamics including rebound is 

analyzed and validated against previous studies. Vortex shedding and formation of 

recirculation regions are observed downstream of the valve, particularly in the gap 

between the valve and the housing. Particle exposure to high shear and entrapment in 

recirculation regions with high residence time in the vicinity of the valve are observed 

corresponding to regions prone to thrombus formation.   
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complement the sharp interface Cartesian grid method scheme for efficient and optimized 

calculations. Detailed timing and accuracy data is presented for a variety of benchmark 

problems involving moving boundaries.  
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the hemodynamic forces on the particles. Leaflet closure dynamics including rebound is 

analyzed and validated against previous studies. Vortex shedding and formation of 

recirculation regions are observed downstream of the valve, particularly in the gap 

between the valve and the housing. Particle exposure to high shear and entrapment in 

recirculation regions with high residence time in the vicinity of the valve are observed 

corresponding to regions prone to thrombus formation.   
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CHAPTER 1  

FLUID MECHANICS OF MECHANICAL HEART VALVES 

1.1 Introduction 

This work is directed towards developing efficient numerical techniques to 

analyze the fluid mechanics of moving boundary problems. The specific characteristic 

targeted for study is the effect of moving boundaries on transport of molecular and 

particulate matter in biological systems.  In as much as that motion is intrinsic to life, 

every living organism, from single-celled organisms to man, employs the action of 

moving boundaries to conduct basic life processes. In the human system moving 

boundaries abound, such as the motion of the heart, operation of heart valves, 

deformation of red blood cells as they squeeze through narrow capillaries, the breathing 

motion of lungs, contractions of the stomach, ureter, uterus, intestines and other organs to 

transport material from gases to solids, motion of the tongue and the production of sound, 

the motion of eyelids to replenish tears to maintain vision and so on.  Of interest herein is 

the interaction between a moving boundary and particle-laden flows.  The method 

developed in this thesis is validated against benchmark solutions involving moving 

boundaries and applied to the thorough analysis of fluid mechanics of mechanical heart 

valve closure. Specifically, the motion of blood cells (RBCs and platelets) through heart 

valves during the closure of the valves is analyzed in great detail. During this passage of 

the blood cells, large shears can be generated, particularly in the closure phase of valvular 

function, which can lead to lysis of the cells or activation of cells resulting in deleterious 

thrombus formation.  
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To investigate the physics of moving boundary – particle interaction in the 

mechanical heart valve during its closure, an advanced numerical technique is required 

that can simulate flows in the presence of moving boundaries, while also transporting 

particles. In this dissertation, a Cartesian grid approach is advanced for this purpose, with 

particular attention paid to efficiency of the solution procedure. The methodology is then 

applied to study the physics of interaction of particle-laden flows with moving solid 

walls. In the following section, the physiological and functional aspects of heart valves 

are reviewed to set the stage for the following chapters, where the method development 

and physics are covered. 

1.2 Heart Valves 

1.2.1 Structure and Function 

The function of the heart valves is to prevent back flow of blood from the 

ventricles into the atria or from the aortic and pulmonary arteries into the ventricles [26] 

(see Figure 1.1). The valves open and close passively but rapidly under the action of fluid 

stresses. The thin leaflets of the valves withstand very high repetitive loads for billions of 

cycles during the human lifetime. There are four heart valves, which ensure that the blood 

flows in one direction and which play a vital role in maintaining the normal cardiac 

output and pressures throughout the body. The tricuspid valve is located between the 

right atrium and ventricle while the pulmonic valve is located between the right ventricle 

and main pulmonary artery. The mitral valve is located between the left atrium and 

ventricle while the tricuspid aortic valve is located between the left ventricle and aorta. 

The structure of the valves is shown in Figure 1.1(b). The left side of the heart is the high 
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pressure side and valvular heart diseases predominantly occur in this side of the heart 

[26].  

The aortic or the semi-lunar valve consists of three thin crescent shaped leaflets of 

about 0.1 mm thickness. In the closed position, aortic valve leaflets coapt and seal the 

aortic orifice. The leaflets are light and open and close passively due to the pressure 

gradient across the valves [26].   

The bileaflet mitral valve has two leaflets, which are thinner than those of the 

aortic valve and form an elliptical orifice. The leaflets are attached to the papillary 

muscles by chordea tendinea. In the fully open position, the upper portion of the mitral 

valve resembles a funnel. When closed, the free edges of the leaflets are pressed against 

each other and the papillary muscles prevent the cusps from falling back into the atrium 

during ventricular contraction [26].  

Valvular diseases are caused by many factors. Rheumatic valvular disease, aging, 

stenosis are some of the common problems with valves.  Stenotic (stiffening of the 

leaflets) valves require higher pressure gradients for the valves to open. This can put 

higher stress on the heart. Even in fully open position, the valve orifice area may be small 

resulting in high pressure loss through the valves. The valves can also become 

incompetent, resulting in increased back flow (aortic or mitral insufficiency) [26].  

1.2.2 Optimal Replacement Valve 

Valve replacement is a common form of treatment for valvular diseases. 

Approximately 250,000 prosthetic heart valves are implanted each year throughout the 

world [163, 164]. Despite years of research, problems associated with heart valve 

prostheses have not been eliminated and new designs continue to be developed. 
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An optimal heart valve needs to allow the patient to lead a relatively normal life. 

The ideal prosthetic valve should be able to mimic the functional characteristics of the 

natural valves. The valves should open with minimum pressure gradient across the valve 

and minimum back flow. The material should be durable, compatible with biological 

tissues and anatomic functions. The material used in making the prostheses should be 

durable, non-toxic and non-thrombogenic so that long term anticoagulant therapy is not 

required after implantation. The prosthetic valve should also be easy to implant 

surgically. The operation of the valve should be relatively silent and the stresses 

developed because of the presence of the valve should not damage formed elements like 

red blood cells and platelets. Blood is a corrosive and chemically unstable fluid, which 

tends to clot (thrombus formation) in the presence of foreign bodies because of platelet 

activation. The contact between the valve and the walls of the vessel should be avoided 

except along the fixation rim. The geometry of the valve should be such that stagnation 

zones and regions of relative stasis are avoided or minimized. The prosthetic valve should 

also be easily manufactured, readily available and inexpensive.  

1.2.3 Types of Prosthetic Valves 

The prosthetic valves currently available today can be broadly classified into two 

categories: (i) mechanical valves; and (ii) bioprostheses (tissue valve prostheses). Some 

of the more commonly used valves are shown in Figure 1.2. Different geometries have 

been tried for mechanical valves. Freshly explanted natural aortic valves from human 

cadavers, known as homografts or allografts have also been successfully used as 

replacement valves. These are the only valves entirely consisting of biological material 

and sewn into place. However, human tissue valves are difficult to obtain and hence not 
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very viable. Porcine and bovine valves after treatment have also been successfully 

implanted. Figure 1.3(a) shows the detailed view of a bi-leaflet valve which is the focal 

point of the current work. 

1.2.4 Problems with Implanted Valves 

Many patients with implanted valves lead a relatively normal life. However, there 

are still many problems associated with implanted valves. Some of the problems 

associated with implantation are: (i) thrombus formation due to platelet deposition (ii) 

mechanical failure due to fatigue or changes in the valve material; (iii) leakages (iv) 

infection (v) mechanical damage to blood including hemolysis, destruction of platelets, 

and protein denaturation; (vi) mechanical damage to the walls of the vessels and (vii) 

tissue overgrowth. The most serious problems with current mechanical valves are 

thrombosis and thromboembolism as shown in Figure 1.3(b), anticoagulant-related 

hemorrhage, tissue overgrowth, infection, paravalvular leak and valve failure owing to 

material fatigue or chemical change [19, 25, 55]. Patients with implanted mechanical 

valves are treated with chronic anticoagulant or blood thinning therapy throughout their 

life. Some patients cannot tolerate chronic anticoagulant therapy due to the risk of 

bleeding complications. In these patients, a bioprosthetic valve implant is used. Long 

term anticoagulant therapy is not required with bioprostheses but tissue calcification and 

degeneration of the leaflets are common. Replacement of the valve is required after an 

average period of about seven to ten years [26].  

Thrombus formation is caused mainly due to deposition and aggregation of 

activated platelets. Platelets are the smallest corpuscular constituents of human blood 

with concentration in the range of 150,000 to 300,000 per 3mm of blood. Platelet 
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activation may be the result of an imbalance in the homeostatic system due to chronic 

blood damage and the destruction of formed blood elements due to non-physiological 

pressure and shear forces in the flow dynamics through the mechanical heart valve. 

Unlike compliant native tissue valves, mechanical valves are essentially rigid structures 

which cause high stress and pressure build-up. Direct mechanical trauma by impact with 

the valve housing and other support structures such as hinges and local flow induced 

stresses may be two other mechanisms responsible for  the deleterious effects on blood 

components [163].  

1.2.5 Fluid Mechanics 

Flow velocity and shear stress fields can be significantly different for various 

prosthetic heart valve designs. Elevated levels of shear stress lead to lethal damage to 

blood cells as well as platelet activation. Platelets have been shown to be activated when 

subjected to shear stresses of about 10 Pa  [67] and this will also be further affected by 

presence of foreign surfaces of the valve housing and leaflets. This critical stress level is 

also affected by the residence time of the cell in the damaging fluid environment, which 

further complicates the damage mechanism [16-18, 163, 164].   Furthermore, the regions 

of flow stagnation and flow separation that occur adjacent to the valves could promote 

the deposition of damaged blood elements, leading to thrombus formation on the 

prosthesis.  

In bi-leaflet valves, thrombus formation is mostly observed in the hinge region 

and also on the valve housing [45-47, 66]. It is hypothesized that the local flow 

conditions in these regions contribute to the thrombus formation. All the studies on bi-

leaflet valves,  experimental as well as computational, report  flow separation and vortex 
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shedding at both ends of the valve leaflets [17, 95].  The high velocity leakage flow 

generates regions of high shear stress which are likely sites for platelet activation. The 

activated platelets have high residence times in the valve vicinity, when caught in regions 

of stagnant flow or re-circulation regions which are the likely sites of thrombus formation 

[156, 157].  

1.2.6 Computational Modeling 

The development of computational models of the fluid mechanics in heart valves 

is motivated by medical and economic concerns as well as efficiency [164]. Accurate and 

descriptive computational models are a versatile, safe, non-invasive and cost-effective 

tool for scientific and medical research. Design changes can be easily tested and validated 

in a cost-effective way before prototype development and experimental assessment. 

However, hardware and software constraints force many simplifying assumptions on the 

computations.  

One significant difficulty in modeling the heart valve mechanics is the wide 

disparity in length scales from the large-scale motions with length scales in the valve 

orifice (~25 mm ) to the leakage flow through the gap (~0.4 mm ) to the flow in the hinge 

regions of mechanical valves (~100 mμ ). To capture the flow dynamics around the heart 

valve accurately, the above length scales need to be resolved adequately. The leakage 

flow is a significant part of the valve dynamics that must be adequately resolved for 

meaningful flow analysis by employing state-of-the-art computational techniques.  

The other main feature that needs to be captured is the leaflet motion. The valve 

sweeps an angle of almost 64 o  in the process of valve closure. It is well established by 
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previous studies [33, 113] that flow patterns recorded from fixed valve models are 

entirely different from moving valve models. Use of body-fitted meshes may be able to 

adequately resolve the leakage flow by use of highly stretched meshes [15, 28, 33, 52, 53, 

64, 75, 76, 80, 81, 85, 118, 119, 149, 161].   However, use of moving meshes presents 

additional complications of re-meshing, in particular the rather complex task of mesh 

generation to accommodate changes in geometry to prevent mesh skewness, 

entanglement, extreme disparity in cell sizes and aspect ratios and so on. All these factors 

impact negatively on the accuracy and robustness of body-fitted mesh schemes. The 

natural way of handling moving boundary problems by entirely obviating complexity of 

mesh generation is by using a Cartesian grid approach. In this method, calculations are 

performed on fixed rectangular meshes and the valve geometry is superimposed on it 

with modifications made in the discretization scheme to accommodate presence of the 

valve structures. Cartesian grid methods have been previously employed in modeling of 

heart valve dynamics [108, 109] but allowing sufficient resolution in the small gaps can 

make the computations extremely tedious because of the fine meshes that have to be 

used. A further consideration is that algorithms for solving the Navier–Stokes equations 

must employ at least second-order accurate numerics both in space and time to capture 

the complex flow dynamics near the heart valve. First-order methods are more stable but 

introduce excessive artificial viscosity into the numerical solutions and tend to smear out 

most scales of motion, except perhaps the largest ones, and could dramatically 

misrepresent hemodynamically relevant flow features—such as the intensity of regions of 

high shear, the existence of pockets of reversed flow and flow separation, etc [163].  
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1.3 Current Aims 

The current work aims at developing an optimized computational model to predict 

regions of platelet activation by exposure to high shear stress and subsequent likely 

regions of deposition due to high residence time in these areas.  The current focus is on 

the flow dynamics through the small gaps between the valve and the housing and its 

effects on platelet activation in the valve closure and rebound stages. While the 

significant shear stress buildup and platelet activation is expected to take place in the 

near-closure and rebound stages, the macro-scale flow dynamics of the closure stage will 

determine the flow features, such as separated boundary layers and shear layers, observed 

when the valve is near closure. The incorporated local mesh refinement enables 

calculation of macro-scale closure dynamics as well as more detailed flow features of the 

leakage flow regions. A second-order locally refined Eulerian Sharp Interface Levelset 

based Cartesian Grid flow solver discussed in Chapters 2 and 3 is employed with platelets 

being modeled as point particles in a Lagrangian particle tracking algorithm. The time 

history of platelet exposure to shear stress is tracked to demarcate areas of high likelihood 

of platelet activation and deposition in the housing region. Chapter 4 describes validation 

and testing of the current method. Chapters 5 and 6 present detailed analysis of the fluid 

mechanics of heart valve closure while Chapter 7 concludes the thesis with suggestions 

for future work.  
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              (b) 

 

Figure 1.1. Heart valves, structure. (a) Heart with parts marked in detail. (b) Structure 
and location of the heart valves.  
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(a) (b) (c) 

(d) (e) 

 

Figure 1.2. Various types of replacement heart valves. (a) The ball and cage valve, (b) 
the tilting disc valve, (c) the bi-leaflet valve, (d) and (e) bio-prosthetic porcine heart 
valves. 



www.manaraa.com

 

 

 

12

 

         

(a) (b)

 

Figure 1.3. The bi-leaflet mechanical valve. (a) Structure, (b) thrombus formation and 
blockage of valve. 
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CHAPTER 2  

NUMERICAL METHODOLOGY 

This chapter and the next describe the evolution of the computational method 

used to model the flow through mechanical heart valves in the closure phase. As stated 

earlier, the method must be able to solve moving boundary problems easily allowing 

adequate resolution in small spaces to capture the flow dynamics over a range of length 

scales. 

2.1 Introduction to Cartesian Grid Methods 

The main advantage of Cartesian grid methods is the ease of mesh generation. 

The computational domain is typically rectangular in 2D and cuboid shaped in 3D. 

Rectangular meshes are generated conforming to the rectangular domain and any 

immersed objects or arbitrary boundaries are allowed to cut across the meshes as 

demonstrated in Figure 2.1. The figure shows the set-up of a problem involving 

calculation of flow dynamics in the stomach. Cartesian grid methods can be broadly 

classified in two categories: 

In the first category are methods where the interface effects are transmitted 

through forcing functions. The most commonly used fixed grid approach for moving 

boundary computations involving solid-fluid as well as fluid-fluid interfaces is the 

immersed boundary method introduced by Peskin [107].  In the original immersed 

boundary method as well as later versions, the interaction of the boundary with the fluid 

is effected using smoothed delta-functions located at the boundaries. The effect of the 

boundaries, in particular boundary forces (such as elastic forces in structures, tethering 
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forces and surface tensions) are transmitted to the momentum equations as source (or 

forcing) terms as shown in the equation below: 

 fupuu
t
u rrrrrr
r

+∇+∇−=∇+
∂
∂ 21. υ

ρ
 (2.1)  

In the above equation, f
r

is the forcing function that represents the effect of the 

immersed boundary. Typically, a numerical δ -function with a support of a few cells is 

used to convert singular surface forces (such as surface tension) into volume forces f
r

. 

The strategy of transmitting interface effects to the flow field through source terms has 

also been used to solve problems in multiphase flows [97, 138, 145] and solidification 

[4]. However, one shortcoming of these methods is that discontinuities at the immersed 

boundary are smeared across a few cell widths. Methods where the interface properties 

are smeared are termed as diffuse interface methods. 

It has been shown  [89] that such smearing can adversely impact the accuracy of 

solutions when the boundary motion is closely coupled with the evolution of surrounding 

fluid flow. There are also issues involved with stability and stiffness of the computations 

[30, 124], particularly when the embedded objects deform along with the flow.  

Improvements to the delta-function based immersed boundary methods have appeared in 

the literature in recent years [84, 87, 112].  In the finite-element setting the fictitious 

domain method [1, 56, 106] and the immersed finite element method [151] have followed 

this idea of transmitting the boundary forces to the fluid using an interaction source term. 

However, a number of papers on immersed boundary methods in recent years have 

deviated from the use of delta-functions in transmitting boundary forces to the fluid. For 

example, in the finite difference/ finite volume methods presented in several recent 
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papers [9, 48, 78, 139], the idea of using a forcing term in the momentum equation has 

been retained. These (non-smoothed) forces are placed at points that adjoin the immersed 

boundary (either inside or outside the solid object) in order to impose the appropriate 

velocity boundary conditions on the solid surface. Thus, unlike the original immersed 

boundary method of Peskin and its derivatives, these new immersed boundary methods 

are in fact sharp interface methods.  

In the second category are methods where the interface effects are included in the 

discrete spatial operators. These methods do not use forcing terms but incorporate the 

presence of the embedded boundaries into the discrete form of the Navier-Stokes 

equations.  Thus, in contrast with the above approach, the momentum equation is retained 

in the form: 

 upuu
t
u rrrrr
r

21. ∇+∇−=∇+
∂
∂ υ

ρ
 (2.2) 

During the discretization procedure however the spatial differential operators 

( 2,∇∇
r

) in the equation are constructed at points that adjoin the interface in such a way 

that the interfacial jump conditions are incorporated. Examples of this class are the 

immersed interface method [83, 90, 91], the sharp interface method [142-144], the ghost 

fluid method [49, 93] and the XFEM method [31, 32, 43, 130].  

The immersed interface method (abbr. IIM) [90] enables a sharp interface 

treatment by casting the governing equations in a coordinate system with axes oriented 

with the local normal and tangent to the interface. Problems involving embedded fluid-

fluid interfaces with singular sources and jumps in material property across the interface 

have been solved using this approach [90, 91]. The method seeks to preserve second-
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order accuracy at points adjacent to the interface as well as away from it. In Ghost Fluid 

Method (abbr. GFM) [49] the governing equations are discretized along the Cartesian 

coordinate directions. Only first-order accuracy is demanded at interface-adjacent points. 

In both IIM and GFM, jumps and singular sources at the interface are incorporated into 

the discrete operators in the transport equations.  

In the sharp interface method [143, 160] a finite volume technique is used to 

discretize the equations within the domains separated by the embedded boundary in such 

a way that information is not smeared at the immersed boundary. This requires reshaping 

of the control volumes through which the interface passes and the integration of the weak 

form of the governing equations over non-rectangular control volumes. Second-order 

accuracy is maintained at bulk as well as interface-adjacent grid points. Problems 

involving fluid-structure interactions [143, 144] and solidification [140-142, 146] have 

been solved using this approach. In the finite element community, the XFEM method 

[131] follows a similar strategy, in that the elements through which the boundary passes 

are enriched (i.e. these elements are subdivided and conform locally to the immersed 

boundary; in other words, degrees of freedom are added) to facilitate integration of the 

weak form of the governing equations.  

Traditionally, diffuse interface methods have been considered to be simpler to 

implement and therefore have found wide usage [5]. In such methods the onus is on 

designing the source terms so that the formulation approaches the sharp interface limit for 

vanishing interface thicknesses. Although straightforward to formulate, sharp interface 

methods have been considered to be more difficult to implement and therefore their use 

has been restricted to some specific situations and to a few practitioners. A finite-
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difference based generalized sharp interface formulation on Cartesian grids is formulated 

in this chapter. This scheme based on interface dependent switch functions is easy to 

implement and applicable to a wide variety of problems involving solid-fluid and fluid-

fluid interfaces.  

2.2 The Current Method 

The present thesis uses a Levelset [105] based sharp-interface Cartesian grid 

method to model moving boundary problems. Methods where the interface effects are 

included in the discrete spatial operators are called sharp interface methods.  The critical 

issues that arise in developing sharp interface Cartesian grid methods for moving 

boundaries problems are: 

1. Representation of embedded interfaces: Explicit surface tracking (involving surface 

meshing and re-meshing) can be challenging for complex moving boundaries, 

particularly in the presence of sharp edges, cusps, instabilities and topological changes in 

the boundaries.  Geometric details such as intersections between the triangulated surface 

mesh and the underlying flow solver mesh need to be computed repeatedly.  Normal and 

curvature computations need to be performed accurately on the surface. The Levelset 

technique presents a solution to many of these problems due to the implicit interface 

representation and built-in regularization due to the entropy-satisfying solutions obtained 

from Levelset advection. In this approach, at each mesh point in a narrow band 

surrounding the interface the signed normal distance to the interface is stored.  The 

interface is implicitly contained in this information as the zero-level surface and can be 

deduced to desired accuracy. Representation of all interfaces (whether solid-fluid or 
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fluid-fluid) using Levelsets simplifies discretization at computational points adjacent to 

the interfaces. 

2. Solving for flows around the immersed boundaries: Since interfaces cut through the 

mesh in arbitrary fashion finite volume discretization requires reshaping of the cells cut 

by the interfaces. This can be avoided by employing a finite-difference discretization of 

the strong form of the governing equations. In adopting the finite-difference approach, 

the main concern is the accuracy and conservation properties of the flow solver. 

Fortunately, for the Cartesian grid approach the deviation of the finite-difference 

approach from the finite-volume approach appears only at the grid points adjoining the 

interface. Here, a second-order accurate Cartesian grid based finite-difference scheme is 

used to discretize the incompressible Navier-Stokes equations. The discretization depends 

essentially on convolving the differential operators with the distance function field. Thus 

the present algorithm handles embedded solid-fluid interfaces (using the sharp-interface 

method detailed in this chapter) and fluid-fluid interfaces (using the Ghost Fluid method)  

[93] in a unified fashion.  

2.2.1 Equations to be Solved 

The governing equations for incompressible flow are: 

 0. =∇ ur
r

 (2.3) 

  upuu
t
u rrrrr
r

2

Re
1
∇+∇−=∇⋅+

∂
∂  (2.4) 

In the above equation, μρ DU 00Re =  is the Reynolds number. 0ρ , 0U , D  and 

μ  are the density, characteristic velocity, characteristic length and viscosity respectively. 
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The scalar (temperature, species concentration) transport equations take the general form: 

 ξβξξβ 2∇=⋅∇+
∂
∂

dt u
t

rr
 (2.5) 

where tβ and dβ  are material constants associated with the time-dependent and diffusive 

terms respectively. 

2.2.2 The Flow Solver 

A cell-centered collocated arrangement of the flow variables is used to discretize 

the governing equations. A two-step fractional step method [160, 165] is used to advance 

the solution in time. The first step evaluates an intermediate velocity by solving an 

unsteady advection-diffusion equation.  

 uuu
t
uu n rrrr
rr

2
*

Re
1
∇+∇⋅−=

Δ
−  (2.6) 

where the intermediate velocity *ur  is evaluated with central-difference discretization 

schemes for convection and diffusion terms. The convective terms are treated explicitly 

and discretized using a second-order accurate Adams-Bashforth method: 

 ( )113
2
1 −− ∇⋅−∇⋅=∇⋅ nnnn uuuuuu rrrrrrrrr  (2.7) 

The diffusion terms are treated semi-implicitly using Crank-Nicholson scheme: 

 ( )nuuu rrr 2*22

Re2
1

Re
1

∇+∇=∇  (2.8) 

The second fractional-step involves the correction of the intermediate velocity field *ur to 
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enforce mass conservation: 

 p
t

uu n
∇−=

Δ
−+ rrr *1

 (2.9) 

where the pressure field p  is evaluated to impose a divergence-free velocity field at time 

step 1+n .  This is done by taking the divergence of Equation (2.4) to obtain a Poisson 

equation for pressure: 

 
t
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The final semi-discrete form of the equations including each of the above 

discretization schemes is as follows: 
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The intermediate velocity is then corrected to obtain the final divergence-free 

velocity field: 

 ptuu n ∇Δ−=+
rrr *1  (2.13) 

The advection-diffusion equations for scalar (heat and species) transport are 

discretized in a similar manner, i.e.: 
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2.2.3 Implicit Interface Representation Using Levelsets 

Embedded surfaces are represented implicitly on the mesh using a standard 

Levelset approach [105, 116, 117]. In addition to the flow variables, the Levelset method 

advects a scalar field lφ , where subscript l  denotes thl  embedded interface. The value of 

lφ  at any point is the signed normal distance from the thl  interface with 0<lφ  inside the 

immersed boundaries and 0>lφ  outside. The interface location is implicitly embedded 

in the lφ -field since the 0=lφ  contour represents the thl  immersed boundary.  

In case of moving interfaces, the motion of the boundary is tracked by advecting 

the Levelset using: 

 0.)( =∇+ lltl V φφ
rr

 (2.15) 

where lV
r

is the thl  Levelset velocity field which is derived directly from the physics of the 

problem. A fourth-order ENO scheme in space and fourth-order Runge-Kutta integration 

in time are used for the evolution of the Levelset field. Since lV
r

 is prescribed by the 

physics only on the interface (i.e. on the zero-Levelset), the value of velocity at the grid 

points that lie in the narrow band around the zero-Levelset needs to be obtained. This is 

done by extension of the interfacial velocity [116] away from the front using: 

 0. =∇+ ψψτ

rr
extV  (2.16) 

where ψ  is any quantity (such as interface velocity components xlV )(
r

 or ylV )(
r

) that 

needs to be extended away from the interface. A choice for the extension velocity is  
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l

l
lext signV

φ
φφ

∇
∇

= )(
r

. This populates the narrow band around each interface in the time 

)( xO Δ=τ  with a Levelset velocity that has been extended outward from the interface in a 

direction normal to it. A reinitialization procedure [132, 133] is carried out after Levelset 

advection to return the φ-field to a signed distance function, i.e. to satisfy 1=∇ lφ
r

. 

Suppose 0)( lφ  is the Levelset field prior to re-initialization. The following equation is 

solved to steady state to re-initialize the Levelset field. 

 )()( lll signw φφφ τ =∇⋅+
r  (2.17) 

 
0

0
0 )(

)())((
l

l
lsignw

φ
φφ

∇
∇

=
r  (2.18) 

where 
22

0

0
0

)()(

)())((
x

sign
l

l
l

Δ+
=

φ

φφ  with the initial condition )()()0,( 0 xx ll
rr φφ = . The 

calculation of normal and curvature of the interface from the Levelset field is simple. The 

normal ( nr ) and curvature (κ ) are given by: 

 lln φφ ∇∇=
rrr  (2.19) 

 nr
r

.∇−=κ  (2.20) 

2.3 Discretization of Operators 

2.3.1 Classification of Grid Points 

The grid points on the Cartesian mesh are classified as bulk points and interfacial 

points. Bulk points are those points that lie away from the interface and interfacial points 
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are those that lie immediately adjacent to the immersed interface.  Figure 2.2(a) illustrates 

an immersed interface and the points that are classified as interfacial points, i.e. points 

that satisfy the condition 0)()( , ≤nbljil φφ , where nb  denotes an immediate neighbor 

along the coordinate directions.  The filled circles represent the interface points in the 

figure. The discrete operators at the interfacial points are different from those that apply 

at the bulk points. The strategy adopted to deal with this situation for the differential 

operators in the governing equation are discussed below.   

2.3.2 Discretization at Bulk Points 

A standard 5-point central-difference stencil applies for a typical bulk point 

shown in Figure 2.2(b) (i.e. a grid point that does not adjoin the embedded interface) in a 

two-dimensional (2D) Cartesian mesh. While only two-dimensional situations are shown 

in the figures for ease of visualization, the discussion below carries over to three-

dimensions (3D). The three-dimensional counterpart would involve a 7-point stencil and 

the discretization for the momentum equations is identical in all the three dimensions as 

described below. 

The second derivative with reference to x  in the diffusion term is discretized as 

follows: 

 2
,1,

2
,,1

2

2

xxx
jijijiji

Δ

−
−

Δ

−
=

∂
∂ −+ ψψψψψ  (2.21) 

while the convection term in the x -direction is obtained as: 

 
x
uu

x
u jijijiji

Δ

−
=

∂
∂ −−++ ,2/1,2/1,2/1,2/1 ψψψ  (2.22) 
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where u  is the x -component of the velocity and  

 
2

,,1
,2/1

jiji
ji

ψψ
ψ

+
= ±

±  (2.23) 

jiu ,21±   are the velocities on the cell faces. Similar considerations apply along the y  and 

z directions. 

2.3.3 Discretization for Solid-Fluid Interfaces 

As pointed out before, the main challenge in sharp interface fixed-grid methods is 

to accurately impose interfacial conditions in the discrete system of equations. Moreover, 

a sharp-interface method demands one-sided discretization for all the partial derivatives 

to avoid smearing of the interfaces.  For the case of immersed solid-fluid boundaries, as 

in fluid-structure interaction problems, the no-slip and no-penetration velocity boundary 

conditions are applied on the solid surfaces. For small Strouhal numbers the Neumann 

condition for pressure applies on such boundaries [141]. These boundary conditions are 

then supplied to the governing equations through the discretization at the interfacial 

points as described below.   

2.3.3.1 2/2 x∂∂ ψ  with a Dirichlet boundary condition 

Second derivatives need to be computed in the diffusion terms in the momentum 

as well as scalar transport equations and in these cases typically a Dirichlet condition 

applies at the boundary. With particular reference to the point ),( ji  in Figure 2.2 (c), this 

point lies in the fluid and the velocities, scalars (temperature and species concentration) 

and pressure are computed there. Note that for points that lie in the solid only the 
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temperature and species fields are computed. In discretizing 22 x∂∂ ψ  at point ),( ji  in 

Figure 2.2(c), the neighbor point ),1( ji +  lies across the interface in the solid and hence 

cannot be used in discretization.  In order to include the interfacial values (i.e. apply 

interfacial conditions), it is necessary to find the location where the zero-Levelset 

intersects the line joining the cell-centers (indicated by the square symbols in Figure 

2.2(c)). In the following expressions for the coefficients the quantity 
x
xI

Δ
Δ

=χ  (see 

Figure 2.2(c)) will be used frequently. Here, IxΔ  is the distance between the cell center 

and the intersection of cell centerlines with the interface (filled square) and xΔ is the 

nominal cell width. By noting that the intersection point has a zero Levelset value, χ  can 

be easily evaluated using the Levelset information at ),( ji  and ),1( ji + : 

 
jiljil

jil

jiljil

jilxIlI

x
x

,,1

,

,,1

,

)()(
)(0

)()(
)()(

φφ
φ

φφ
φφ

χ
−

−
=

−

−
≅

Δ
Δ

=
++

 (2.24) 

Note that in evaluating the quantity χ  a linear profile is assumed for the distance 

function between adjacent grid points.  Higher-order approximations of the geometry can 

be implemented as well [34, 129]. The second-derivative can be estimated to second-

order accuracy using the form: 

 jijijijijijiIIx ,2,2,1,1,,2

2

−−−− +++=
∂
∂ ψαψαψαψαψ  (2.25) 

Here, Iψ  is the value on the interface at the location xI+   with reference to Figure 

2.2 (c). Using Taylor series expansions for each of jijiI ,2,1 ,, −− ψψψ  about point ),( ji  and 
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further demanding that 22 x∂∂ ψ  be estimated to O( 2xΔ ) yields the following 

expressions for the coefficients. 

 ))2)(1((6 2xI Δ++= χχχα  (2.26) 

 ))1(()24( 2
,1 xji Δ+−=− χχα  (2.27) 

 ))2(()1( 2
,2 xji Δ+−=− χχα  (2.28) 

 jijiIji ,2,1, −− −−−= αααα  (2.29) 

In practice the above implementation may present difficulties due to the singular 

behavior of Iα  as →χ 0. Therefore for small values of χ (< 0.01), i.e. when the 

interface is very close to the mesh point, the value χ  is replaced by )01.0,max(χ . This 

involves a slight perturbation of the boundary within a grid cell and decreases the order 

of accuracy locally from second-order. However this situation arises at only a few mesh 

points and the global accuracy is not impacted. Note that a first-order approximation is 

given by: 

 ))1(/(2 2xI Δ+= χχα  (2.30) 

 ))1((2 2
,1 xji Δ+=− χα  (2.31) 

 jiIji ,1, −−−= ααα  (2.32) 

 
( ) ( )

2
,1,

2
,

2

2

)1(
2

)1(
2

xxx
jijijiI

Δ

−

+
−

Δ

−

+
=

∂
∂ −ψψ

χ
ψψ

χχ
ψ  (2.33) 

The singularity with respect to χ  remains in this case as well. However, positivity 

of the off-diagonal coefficients is maintained in the first-order case while the second-
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order form will lead to a negative coefficient ji ,2−α . In practice this negatively impacts 

the convergence of the iterative solver used for solving the discrete system of equations; 

to maintain robustness a first-order treatment for the diffusion term is employed at the 

interfacial points in the present calculations.  While this practice lowers the order of 

approximation in the lower-dimensional set of interfacial cells, global second-order 

accuracy is still maintained as shown in the results.    

2.3.3.2  ( xu ∂∂ )( ψ  and x∂∂ψ  ) with Dirichlet conditions  

Similar to the second-derivative terms above, the discretization scheme for 

xu ∂∂ )( ψ  consists of contributions from points in the same phase. The differential 

operator for the convection term is obtained in the following form: 

 jijijijiII uuu
x

u
,2/3,2/3,2/1,2/1 )()()( −−−− ++=

∂
∂ ψλψλψλψ  (2.34) 

Note that to avoid pressure-velocity decoupling in the current collocated variable 

arrangement cell face velocities are also stored along with cell center velocities [165]. 

These cell-face velocities are used in evaluating the convective fluxes in Equation (2.34).  

By employing Taylor expansions for each of the ',' jiψ  in Equation (2.34) about point 

),( ji  and demanding an O( 2xΔ ) scheme the following expressions are obtained for the 

constants: 

 ( )xji Δ+−=− )12(/)32(,2/1 χχλ  (2.35) 

 )23/(()21(,2/3 xji Δ+−=− χχλ  (2.36) 
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 ))384/((8 2 xI Δ++= χχλ  (2.37) 

The general form and the coefficients for a first-order scheme in this case are: 

 jijiII uu
x

u
,2/1,2/1 )()( −−+=

∂
∂ ψλψλψ  (2.38) 

 ))21/((2,2/1 xji Δ+−=− χλ  (2.39) 

 ))21/((2 xI Δ+= χλ  (2.40) 

The above general form can be rewritten as follows:  

 
( )

x
uu

x
u jiI

Δ

−

+
=

∂
∂ ,)()(

)21(
2 ψψ
χ

ψ  (2.41) 

Since the convection terms are explicitly computed the second-order 

approximation can be employed except at those points where two opposing interfaces 

approach to within a mesh point. In this exigency the first-order approximation needs to 

be adopted. 

2.3.3.3  22 / x∂∂ ψ  operator with a Neumann boundary condition 

This situation arises in the pressure Poisson equation for points that adjoin the 

embedded boundary. The stability and accuracy of the flow solver depends critically on 

the construction of this term.  In fact, devising a discrete form for the Laplace operator 

with a Neumann condition on the immersed interface proved to be the key to the 

robustness of the overall flow solver. 

From Figure 2.2(c) it is evident that when discretizing the above operator the 
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boundary condition that will apply at point xI+  is 0=∂∂ nψ . If the immersed boundary 

is accelerating, then the interface boundary condition also accounts for the added mass 

effect. It is not immediately clear how such a Neumann condition can be incorporated 

into the discrete form of the above operator. Apart from being crucial to the robustness of 

the overall method, the treatment of the pressure boundary condition is a key 

distinguishing feature of the finite-difference approach adopted here as opposed to the 

finite-volume approach detailed in previous work [143]. In the latter, a weak form of the 

pressure Poisson equation was employed, i.e.  

 ∫ ∫
Δ
⋅

=
∂
∂ dS

t
nudS

n
p rr *  (2.42) 

The interfacial cells were reshaped into irregular shaped cells where one of the 

cell edges coincided with the interface. Due to the weak form above the Neumann 

boundary condition for pressure is easily incorporated by setting the interfacial 

contribution to zero (i.e. 0=∂∂ np ) implicitly in the discrete pressure Poisson equation. 

However, since the strong form is employed in the present finite-difference scheme on a 

Cartesian grid, one has to impose a Neumann boundary condition on the pressure in some 

way in the discrete Laplace operator. Several approaches were tried for discretizing terms 

such as 22 x∂∂ ψ with a Neumann condition on the immersed boundary and the one 

chosen for robustness is described below. 

The method chosen is a robust, albeit first-order, approximation. The Laplace 

operator in the pressure Poisson equation is assembled as for the Dirichlet boundary 

condition case (i.e. Equation (2.33)). The interfacial pressure is found using the Neumann 

condition as follows. Looking at Figure 2.2 (d) the interface pressure can be estimated by 
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extending a normal from point I  and placing two points distant xΔ apart along the 

normal. The locations of the points xxx III 2,1,  on the probe are therefore,  

 

xNxx

xNxx

jyxx

xNxx

xNxx

ixxx

yI
yIyI

yIyIyI

IjiIy

xI
xIxI

xIxIxI

IjixI

Δ+=

Δ+=

Δ+=

Δ+=

Δ+=

Δ+=

rrr

rrr

rrr

rrr

rrr

rrr

2

2

2

1

,

2

1

,

  (2.43) 

Fitting a quadratic to the pressure field along the normal erected and demanding 

that 0=
∂
∂

n
ψ  at point I , one obtains: 

 yxIyxIyxI /2/1/ 3
1

3
4 ψψψ −=  (2.44) 

In the above expressions the normal vector appears in several places. The normal 

at any point is easily obtained by bilinear interpolation from the values at the grid points. 

Note that the values of ψ  at the points yxI /1  and yxI /2  are required in the above 

equation. These are calculated by bilinear interpolation from the surrounding mesh 

points. One issue that arises while evaluating the yxI /1ψ and yxI /2ψ  is that for certain 

interface orientations the bilinear interpolation may involve a point that lies in the solid. 

Thus, a single layer of ghost values of pressure are computed and stored at the points in 

the interfacial points in the solid.  The ghost values of pressure are also obtained with the 
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condition that the Neumann condition applies at the interface. Thus, a normal to the 

interface is erected from the ghost point as shown in Figure 2.2 (d) where the locations of 

the points on the normal are GGGG Nxx φ
rrr

+=1  and xNxx GGG Δ+=
rrr

12  respectively. 

The normal at point G  is obtained from the Levelset field. Fitting a quadratic to 

the pressure field along the normal and demanding that 0=
∂
∂

n
ψ  be satisfied at the point 

1G  (i.e. on the solid boundary) leads to: 

 2
121

2
2

2
12211

2
21

2
2

dddd
dddd GGG

G
+−
+−

=
ψψψ

ψ  (2.45) 

where Gld )(1 φ=  and xd Gl Δ+= )(2 φ .     

The interfacial value of the pressure ψG1 is obtained from Equation (2.45) above 

and the value at 2G  is obtained by bilinear interpolation. Note that the value of the ghost 

pressure and the interfacial pressure become inter-dependent through Equations (2.44) 

and (2.45). The determination of the interfacial pressure and ghost pressure are embedded 

within an iterative solver for the pressure and therefore the ghost and interfacial value of 

pressure converge along with the pressure field at the fluid computational points. This 

scheme works reliably for the entire range of Reynolds numbers and flow problems 

tested using the present solver. The above scheme applies in three-dimensions as well.  

2.3.4 Discretization for Fluid-Fluid Interfaces 

When a fluid-fluid interface is present, property and flow variable jump 

conditions make their appearance in the discrete form of the Laplace operator ( ψβ∇⋅∇ ) 

in the viscous terms in the momentum equation and in the pressure Poisson equation. The 
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jump conditions at the fluid-fluid interfaces manifest themselves primarily in the form 

xx )(βψ . These arise in the viscous terms in the momentum equation (where ( νβ = ) and 

the pressure Poisson equation (where 
ρ

β 1
= ).  Consider the picture in Figure 2.2(c) 

assuming a fluid-fluid interface separating the points ),( ji  and ),1( ji + . The 

discretization of the Poisson-type term in the x -direction proceeds as follows: 

 
x

xx jiji
xx Δ

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= −+ 2/12/1)(

ψβψβ
βψ  (2.46) 

The jump conditions at the interface are: 

 [ ] −
+

+
++

−== xIxIxIa ψψψ  (2.47) 

 [ ] ( ) ( )−
+

+
++

−==
xIxxIxxIx b βψβψβψ  (2.48) 

In discrete form, following the GFM approach [93, 104] the second jump 

condition can be written as: 

 xI
jixIxIji b

xx +

−
+−

+
+++ =
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⎠
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⎜
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⎞

⎜
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⎝

⎛

Δ−

−

χ

ψψ
β

χ

ψψ
β ,,1

)1(
 (2.49) 

This involves a first-order estimate of the gradients on each side of the interface. 

In fact the GFM [93, 104] approach is identical to the IIM [91] if the Taylor expansions 

in IIM are carried to first-order only and the second-derivative jumps are ignored. Using 

the first jump condition in Equation (2.47), 
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This gives: 
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 (2.51) 

Therefore, using this interfacial value in Equation (2.49) one obtains: 

 ( ) ( ) xIxIjijijijixx b
x

a
xxx +++−

−

+ Δ
−

−
Δ

−−
Δ

−−
Δ

=
β
βχβψψβψψββψ
ˆ)1(ˆˆ

)( 2,1,2,,12 (2.52)  

 
))1((

ˆ
χβχβ

βββ
−+

=
−+

−+

 (2.53) 

Similarly, the expression for the case where the interface lies between points 

),( ji  and  ),1( ji − can also be obtained. 

2.3.5 The General Expression 

The general algorithm for discretization of the Navier Stokes’ equations by the 

sharp interface method on an Eulerian mesh includes both solid-fluid [96] and fluid-fluid 

interfaces [92] discussed in the previous sections. Figure 2.3 shows all the likely 

situations that can arise in the solution of a general moving boundary problem involving 

fluid-fluid and solid-fluid interfaces. The situation in Figure 2.4 can be considered to be 

the general case encompassing the cases shown in Figure 2.3(a)-(d) involving both solid-
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fluid and fluid-fluid interfaces. Therefore, based on the expressions for the sharp interface 

method obtained above obtained for the above two cases and considering that Case 4 

shown in Figure 2.3(d) corresponds to Case 1 shown in Figure 2.3(a) when the 

unresolved sliver of the Fluid 1 phase is ignored, a general discrete form for the discrete 

Laplace operator, xx )(β  can be obtained. The following expressions apply where 

multiple (say maxL ) embedded boundaries are present in the flow.  

 

x
b

x
b

xxxx

xi

xxx

xi

xxx

x

xx

x

xx

x

xji
xx

x

jix
xxxx

Δ
−

+
Δ

−
+

Δ
+

Δ
+

Δ

−
−

Δ

−
=

−

−−−

+

+++

−−++−
−−

+
++

γβ
χβ

γβ
χβ

γ
αβ

γ
αβ

γ

ψψ
αβ

γ

ψψ
αββψ

11

222
,

2
,

)1(ˆ)1(ˆ

ˆˆ)(ˆ)(ˆ)(

 (2.54a) 

where the coefficients x±β̂ , x±α  and xγ  are obtained as follows. 
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 jixxIxx ,1)1( ±±±±± −+= ψδψδψ  (2.54e)  
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The advantage of casting the equations in the above form is that implementation 

in a computer code is straightforward.  Note that Equations (2.54) reduce in the 

appropriate cases to the discrete form for a solid-fluid or for a fluid-fluid interface and to 

standard central differences in the absence of interfaces. The above coefficient assembly 

also applies to any point in the domain, including points that lie away from the interface 

and interface adjacent points that conform to any of the cases shown in Figure 2.3.  

2.3.6 Velocity Correction 

Once the intermediate velocity and pressure fields have been obtained as 

described above, the velocity correction step is performed to update to a divergence-free 

velocity field. For grid points that lie away from the interface this is straightforward. For 

points that lie next to the immersed boundary the corrections are to be performed based 

on the different situations that may arise at such points, as illustrated in Figure 2.3. The 

pressure gradients required to correct the cell center and cell face velocities have to be 
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evaluated in a manner consistent with the evaluation performed for obtaining the 

gradients while discretizing the Laplace operator in the pressure-Poisson equation.  For 

the particular cases illustrated in Figure 2.3 the corrections are effected as follows in a 

generalized fashion: 
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Note that cell face velocities are corrected independently: 
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The pressure gradient at the cell face is obtained based on straightforward central 

differences. The discrete correction expressions are similar to those given above. 

The advantage of casting the equations in the above form is that implementation 

in a computer code is straightforward.  Note that Equations (2.55) reduce, in the 
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appropriate cases, to the discrete form for a solid-fluid interface or for a fluid-fluid 

interface and to standard central differences in the absence of interfaces. Thus, a sharp-

interface calculation that handles solid-fluid immersed boundaries, fluid-fluid immersed 

boundaries and their interactions can be easily programmed by a few lines of code that 

modify a simple uniform Cartesian grid flow solver. The discretization of the components 

of the Laplace operator involving derivatives in the y  and z  directions is performed 

with procedures identical to that presented above for the x  derivatives.  The above form 

unifies the treatment of the sharp interface method with the Ghost-Fluid method [74] and 

is a first-order implementation of the Immersed Interface Method [91]. 

2.4 Moving Boundaries 

In Eulerian sharp interface methods, when the solid boundary moves across a grid 

point, the state of the point can change from liquid to solid or vice versa. Different 

approaches have been employed to handle this situation. In Ghost-Fluid type methods 

and immersed boundary methods [48, 78, 93] or fictitious domain methods [57] flow 

fields are computed within as well as outside the immersed solid object. Thus, when the 

boundary crosses over a grid point, changing the state from solid to fluid, the newly 

emerged fluid point simply takes on the flow field variables that were available at that 

point in the previous time step. In the sharp interface method [143] as well as immersed 

interface method [89, 90] where the flow is computed separately in each sub-domain 

(fluid and solid) separated by the interface and no ghost flow field exists in the solid, a 

scheme must be devised to obtain the flow field variables at the newly emerged fluid 

point. Note that the converse case where the emergence of a grid point that was in the 

fluid phase into the solid phase presents no issues since the flow field is not computed in 
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the solid phase. 

A newly emerged fluid grid point is defined by the condition 0)()( ,
1

, <+ n
jil

n
jil φφ . 

Since the point was previously in the solid phase 0)( , <n
jilφ )  it had no history in the fluid 

phase ( 0)( 1
, >+n

jilφ ), i.e. nur  (as also nξ ) does not exist in the fluid phase for such a point. 

Therefore, these points are to be evolved to time level 1+n  in a special fashion. Note 

that since the pressure Poisson equation does not have a time-dependent term the pressure 

in such a cell can be evaluated as usual once a *ur  value is available after solving the 

momentum equation. The method to obtain nur (and nξ ) for such points follows along the 

lines detailed in [143, 144] and is analogous to the approach taken in moving grid 

formulations when a fresh grid point is inserted following mesh refinement. The value at 

such points is obtained by interpolation from the known values in the surrounding cells 

and on the moving boundary (where the boundary conditions are specified). For the 

particular time step when a grid point changes from solid to fluid phase, the value of nur  

at that point is found using a linear interpolation operator spanning points in the fluid and 

on the interface.  

The interpolation points that are picked depend on the orientation of the interface 

in the cell as illustrated in Figure 2.5. For the particular case in Figure 2.5, the value at 

the freshly cleared cell ),( ji  is calculated as )1()( 1,, y
n
I

n
jiy

n
ji y −+− ++=

−
χψψχψ , where 

y−χ  is the distance between the grid point ),( ji  and the interfacial point yI . The 

interpolation points are chosen depending on the direction of the normal vector at yL  

( )),( yx nnn =
r  and the ratio xy nn / . For instance, in the above expression for the case in 
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Figure 2.5, points yL  and )1,( +ji  are chosen since ( yn >0 and yn > xn ).Consistent with 

the difference scheme in the interface-adjacent grid points the treatment at the newly 

emerged fluid points is first-order accurate. Note that this procedure is equivalent, in 

analogy with purely Lagrangian (moving grid) methods, to interpolating the value of 

variables to a newly inserted point after mesh refinement from values at the old mesh 

points (i.e. before refinement). In diffuse interface Eulerian methods (where interfaces 

may be captured using VOF, Levelset, phase field etc.), where the interfacial forces are 

spread over the mesh [6, 23] this issue of cross-over does not arise since there is no clear-

cut interface location and all properties are taken to vary smoothly over a few mesh 

points. 

2.5 Algebraic Multigrid with Moving Embedded Boundaries 

The typical problems to be solved using the above developed method involve 

embedded solid-fluid and fluid-fluid moving interfaces. A well designed geometric 

multigrid method has been previously shown to be effective in accelerating the Poisson 

solver for solid-fluid interface problems [144, 160]. Geometric multigrid methods require 

information on the manner in which the embedded geometry cuts through the mesh to 

design an effective grid coarsening strategy and special modifications at each grid level 

have to be made to account for embedded boundaries. As the complexity of the problems 

increases upon the inclusion of fluid-fluid and solid-fluid-fluid interfaces with property 

jumps and surface tension, the complexity of designing a geometric multigrid method 

also increases. Algebraic Multigrid (AMG), on the other hand, is virtually a ‘black-box’ 

solver. In case of fluid-fluid problems with implementation of Ghost Fluid Method, the 
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formulation is likely to have a coefficient matrix that is asymmetric with large coefficient 

jumps depending on the density difference between the two fluids. Assembly of 

coefficients on coarser meshes for the geometric multigrid method then becomes a 

complex process.   

Moreover, in the case of moving boundary problems, coefficient assembly may 

need to be done at every time step.  In moving interface problems a local mesh 

refinement (LMR) algorithm with a tree structure is attractive in order to better resolve 

the interfaces [110, 162]. Such a local mesh refinement would result in the coefficient 

matrix losing its penta-diagonal structure and becoming sparse and unstructured.  In such 

cases the AMG approach would be a natural choice to accelerate the Poisson solver, since 

it relies only on the coefficient information on the finest level of mesh. The geometry 

information carried by the fine grid coefficients is automatically transmitted to the 

coarser meshes.  With some modification to the standard algebraic multigrid algorithm, 

an effective grid coarsening and solution strategy has been designed that naturally 

accounts for the presence of embedded objects, whether they are stationary or moving 

solid-fluid or fluid-fluid interfaces.  

2.5.1 Local Coarsening for Moving Boundary Problems 

In AMG, the coarser grids are recursively set up (starting from the finest mesh) 

based on the coefficient matrix from the previous level. An appropriate interpolation 

scheme is defined and coarse grid coefficients  are obtained from the next fine level 

coefficients using the Galerkin identity [63].  The process of coarsening is repeated till a 

sufficiently coarse level system is obtained. Different methods and algorithms are 

available for the definition of the interpolation operator. The present implementation uses 
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the algorithm described by Wagner [148] with a point-by-point Gauss-Seidel as the 

smoother. A parallel implementation of the algorithm is also possible[24, 35, 65, 69] 

The main components of the multigrid algorithm include the grids from level 1 

(finest) to M  (coarsest) denoted by mΩ where m denotes the level of mesh. Coefficient 

matrices on each level of mesh m  are represented by mA . The interpolation operator 

(coarse to fine) is represented by m
mI 1+  and the restriction operator (fine to coarse) by 

1+m
mI . The restriction operator matrix is the transpose of the interpolation operator and the 

coefficient matrix on the next coarser level of mesh is computed by a Galerkin type 

operation as m
m

mm
m

m IAIA 1
11

+
++ = . The set-up phase includes dividing the set mΩ into the 

coarse and fine sets, defining the interpolation matrix m
mI 1+  and computing the new 

operator matrix 1+mA .  

A significant trade-off for the robustness of AMG is the long setup time required 

to assemble the coarse meshes and coefficients. In the case of stationary boundaries, the 

set-up needs to be done only once and can be ignored as a one-time investment of CPU 

time. But for moving boundary problems, the coefficients on the fine mesh, in the 

vicinity of the interface are re-assembled at every time step, which means that the coarse 

meshes also need to be re-assembled at every time step. This is not a very efficient 

process. To solve this problem, a ‘local coarsening’ strategy is developed which 

effectively deals with this obvious disadvantage of AMG as a fast solver. In the Cartesian 

grid framework, when the interface moves, only the coefficients at grid points close to the 

interface need to be re-assembled. Therefore it seems unnecessary to re-coarsen and re-

assemble the grids and coefficients in the entire domain at every time step.  
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A strategy has been developed to re-coarsen only the cells within the narrow band 

of the Levelset field corresponding to the moving interface. This is done at every level of 

multigrid. At coarser levels of mesh, the Levelset information is coarsened and only those 

mesh points that are likely to have dependencies on the interfacial cells are cleared for re-

coarsening. Since the interface generally moves less than a grid spacing during a single 

time step (due to a CFL-type criterion), this process ensures that all the grid points that 

are likely to be dependent on the interface points are re-coarsened, while the rest of the 

domain uses the same coarse grid as in the previous time step. Figure 2.6 illustrates this 

‘local’ coarsening process. The domain consists of two objects placed in the flow path 

shown in the figure by thick lines. The coarsened Levelset tube is marked by the thin 

lines. The first object is a solid cylinder of non-dimensional radius 0.1, placed at (0.3, 

0.7), the second is a bubble of the same radius placed at (0.7, 0.3). The latter fluid-fluid 

interface has large coefficient jumps because the density of the liquid is 100 times that of 

the bubble. Figure 2.6(a) shows the coarsened mesh at the beginning of a time step. At 

this point a full coarsening of the domain has been done for the multigrid. Figure 2.6(b) 

shows the starting of coarsening process at the next time step. As shown in the figure, 

only the mesh points within the Levelset tube are cleared for coarsening while the 

remaining domain is maintained as in the previous time step. AMG set up strategy is then 

applied to the cleared cells. Figure 2.6(c) shows the domain that has been re-coarsened 

locally at the second time step. It can be noticed from Figure 2.6(c) that the local 

coarsening strategy does not necessarily choose the same points that were chosen when 

the whole domain was coarsened. This implies that with local coarsening, there is a 

likelihood that the moving interface may leave a trail of irregular coarsening following its 



www.manaraa.com

 

 

 

43

path of motion as the solution progresses. From rigorous testing of moving interface 

problems involving solid-fluid and fluid-fluid interfaces, it was found that although the 

points chosen by local coarsening are not necessarily exactly the same as the ones chosen 

by full coarsening, the convergence trends of AMG are not significantly affected. This is 

demonstrated later in sections 2.5.3 and 2.5.4. Therefore local coarsening is a strategy 

that can be used for set up of multigrid for fast solution of the pressure Poisson equation 

in moving interface problems. If desired, full re-coarsening can be performed periodically 

at a fixed interval so that all traces of the moving boundary are eliminated periodically in 

the course of calculation.  It has been observed that depending on the size of the interface, 

the local coarsening strategy takes up only about 10% of the time taken up by full 

coarsening for most applications.   

2.5.2 Evaluating the Performance of AMG  

The performance of the algebraic multigrid solver is evaluated for typical 

problems with embedded sharp interfaces, which involve solid-fluid or fluid-fluid 

interfaces or both. The treatment of the solid-fluid interfaces has been detailed in this 

chapter and the fluid-fluid interface is handled using the Ghost Fluid Method  [49]. An 

important consideration while selecting a solver is the scalability of the method. The 

scalability of a method is defined as the ratio of the solve time to the number of 

computational points on mesh. With increasing number of computational points, the 

performance of a method with better scalability gets increasingly better when compared 

to other solvers [154, 155]. The number of work units in the solution process is defined 

by: 
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11 N

N
n m

m

M

m=
∑=ϖ  (2.56)  

ϖ  indicates the number of work units and mn  denotes the number of inner 

iterations on level m of mesh, mN  is the number of points on level m of the mesh and 1N  

is the number of points on the finest level of mesh.  This is a measure of the 

computational effort expended in the solution of a given problem. The CPU time required 

for the solution to converge to a residual level of 1e-6 in the ∞L  norm is measured for the 

advancement of the solution for 25 time steps starting from an arbitrary initial condition 

for the pressure and velocity fields. For the stationary boundary problems considered 

below, at the end of 25 time steps, the effects of the arbitrary initial conditions have 

generally been overcome and the subsequent convergence is fairly rapid. Because of the 

presence of embedded boundaries and the non-uniformity of coefficients of the cells 

adjacent to the interface, the highest values of residuals are generally concentrated close 

to the interfacial cells. The data presented has been recorded for a maximum of 3 levels 

of multigrid so as to ensure uniformity.  More levels can be used as well depending on 

the number of mesh points on the finest mesh and the aspect ratio of the flow domain. 

The performance of the AMG solver is tested below for a hierarchy of problems 

involving embedded interfaces.  The performance is compared with the standard point 

Gauss-Seidel and Line-SOR solvers. 

2.5.3 Scalability Tests 

The scalability characteristics of the three solvers tested are shown in Table 2.1. 

for different applications with and without embedded interfaces. In each case the 
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scalability characteristic of the AMG solver is found to be at least three times better than 

that of the other solvers depending on the specific application. The relative scalability of 

the solvers is more or less independent of the type of application with or without 

interfaces as seen from Table 2.1..  With increasing grid size the performance of AMG 

gets increasingly better when compared to the Line solver and Gauss-Seidel point solver. 

For instance, the data for the flow across cylinder in 2D in Table 2.1. shows a scalability 

of 0.052 for the Line solver, 0.054 for the point solver and 0.01 for the Multigrid. 

Hypothetically, if a grid with 100 computational points requires a solve time of ‘n’ secs, a 

grid with 1,000000 grid computational points would require ‘n+51994’ secs for the point 

solver, ‘n+53994’ secs. for the Line solver and only ‘n+9999’ secs., for the Algebraic 

multigrid.  

2.5.4 Solve Time Comparison 

Table 2.2 shows the comparison of solver parameters (the solve time, work units 

and number of fine mesh iterations) on a variety of moving boundary problems with 

immersed interfaces. The problem specifications are listed in the table. The recorded data 

is scaled by the corresponding values for a Gauss-Seidel Point solver. The AMG solver is 

found to consistently yield a speed-up of 5 times over the point solver in each case, 

regardless of the type of the immersed interface. The line solver on the other hand 

performs better in the case of solid-fluid interfaces than fluid-fluid interfaces.  

2.5.5 Moving Boundaries with Local Coarsening 

This case involves moving solid-fluid as well as fluid-fluid interfaces and tests the 

performance of the AMG solver with multiple embedded boundaries with and without 
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local coarsening. A bubble is placed in a tube with moving walls. The tube contracts and 

expands periodically. The bubble is deformed and transported due to the contraction of 

the tube. The evolution of the shape of the tube walls and the bubble in the contraction 

phase are shown in Figure 2.7(a). As seen in Figure 2.7 AMG achieves a speed up of 

about 10 times that of the point solver for this problem, even in the presence of multiple 

moving interfaces. Figure 2.7(b) illustrates the recorded solver data for this application. 

The figure shows the comparison of solve time, work units, fine mesh iterations tabulated 

in Table 2.2 as well as the relative set-up times for the multigrid with and without local 

coarsening. While there is a 10 times speed-up in the set-up process with local coarsening 

the solve times in both cases are comparable. This shows that in the case of moving 

boundary problems, where the interface coefficients change at every time step, local 

coarsening is a viable alternative to save time required for multigrid set-up. A comparison 

between the multigrid with and without local coarsening shows a marginal increase in the 

solve time when the local coarsening strategy is used. But this is offset by the increased 

set-up time required by the multigrid without local coarsening. Over increasing number 

of time steps the increasing savings in the set-up time leads to a large saving in total 

computation time when local coarsening strategy is used. 

2.6 Particle Tracking 

In solving the valve closure problem, the principal interest is in predicting sites 

prone to thrombus formation due to platelet activation. Platelets are modeled as point 

particles by a Lagrangian particles tracking algorithm [27, 40, 98]. The method adopts a 

one way coupling mechanism in which the particles are influenced by the flow field but 

the flow field is not influenced by the particles. A dilute flow is assumed and particle-
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particle interactions are neglected. Particle length scales are assumed to be very small 

compared to the fluid length scales and particles are treated as points. No wake effects are 

included. All particles are assumed to be spheres of the same diameter with particle 

material density being larger than that of fluid. The carrier fluid is assumed to be 

incompressible. Drag and lift forces acting on the particles due to the fluid flow depend 

on the particle size and mass and influence the particle motion. A particle momentum 

equation is solved to calculate particle velocity as:  

 fvv
t
v

dt
vd rrr
r

=∇⋅+
∂
∂

=  (2.57) 

In the above equation, vr  is the particle velocity vector, f
r

 represents the total 

contact force on the particle including the drag and lift forces. The lift and drag forces are 

modeled as functions of the particle Reynolds number and Stokes number. The modeled 

drag force is given by [36]: 

 ( )( )uv
St

f pD
rrr

−+−= 687.0Re15.011   (2.58) 

In the above equation, LUdSt pp μρ 18/2= , is the Stokes number defined as the 

ratio of particle response time to the fluid time scale. In the present case, the Stokes 

number correlates with the particle size or mass.  μρ /||Re pfp duv rr
−= , is the particle 

Reynolds number and ppd ρ, are the particle diameter and particle density respectively. 

UL,  are the particle length and velocity scales. Lift forces are taken into account when 

there is particle rotation and the pressure differences between the top and bottom sides 

cause lift on the particle. The ‘Saffman’ lift force [40] and the overall lift force for the 
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specific range of Reynolds numbers are given by [114, 115]: 

 ( ) ⎥⎦
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⎡ ×−
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In the above equations, ||
||2 fvu

pd
ωβ rr

−
=  and uf

r
×∇=ω  is the vorticity. 

After solving the particle momentum equation to obtain the particle velocities, the 

particle locations are updated as:  

 tvxx nn δrrr
+=+1  (2.61) 

nn xx ,1+r  are the new and old particle locations and tδ is the time step size. In the 

post processing phase, the concentration of particles is computed. The particle 

concentration equation is solved:  

 0).( =∇+
∂
∂ Vc

t
c rr

 (2.62) 

avaV /rr
=  is the averaged particle velocity. Equation (2.62) is solved either in 

explicit or implicit fashion. In certain cases when the particles are scattered in a 



www.manaraa.com

 

 

 

49

arbitrarily there may be situations when the velocity and concentration gradients 

computed are not stable because of lack of sufficient number of interpolatory points. In 

most cases, such particles may be removed by applying specific criteria. However, in 

problem where particles are scattered in response to fluid forces, particle removal can 

cause the results to present an unrealistic picture.  

Therefore, a different method is adopted to compute the particle concentration. It 

is an SPH-like method [39, 101, 102]. The particles are treated as a cloud of particles and 

a Gaussian distribution is assumed. An average particle concentration is computed at any 

location as: 

  ∑=
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −−

pN

j

jh

jrr

j eAc
1

2

2)(

 (2.63) 

In the above equation pN  is the total number of particle in the domain, jA  is the 

amplitude of the cloud around particle j . jrr −  represents the distance between particle 

j  and the point at which concentration is being computed. jh is the region of influence of 

particle j  or the particle cloud radius. Since the distribution of particle is assumed to be 

Gaussian, the summation is carried out only on particles in a small region around the 

required location. This method is always stable since there is no gradient computation. 

However, this method does not give a very smooth particle concentration field. For the 

current application, this method of particle concentration computation is adopted. 

2.7 Coupling Particle Transport with Flow 

In this chapter, three parts of the overall computational algorithm including the 
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flow solver, the moving boundaries and particle tracking were developed. These 

components are essential in simulating the heart valve closure and predicting sites with 

high likelihood of platelet activation. The overall algorithm for the particle-interface-flow 

coupling is as follows: 

1. Time is advanced ttt nn δ+=+1  .  

2. The new boundary location is defined by advecting Levelsets to obtain 1+nφ .  

3. Intermediate velocity field *ur  is computed. 

4. The scalars 1+nc  (temperature, species concentration etc.) are computed.  

5. The pressure field is calculated by solving the pressure Poisson equation. 

6. The velocity field is corrected. 

7. Computed velocities are input to the particles 

8. Particle momentum equation solved with drag, lift and buoyancy forces 

9. Particles locations are updated.  

10. Post processing: Particle concentrations are calculated 
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Scalability (sec./computational point) Solver/ Problem  

Gauss-Seidel 
Point Solver 

Line 
Solver 

Algebraic 
Multigrid 

Channel Flow  in 2D (Re=250):  No 
interfaces 

0.045 0.05 0.009 

Flow across cylinder in 2D (Re=50): 
Solid-Fluid Interface 

0.052 0.054 0.01 

Flow across sphere in 3D (Re=100) : 
Solid-Fluid Interface 

0.07 0.06 0.02 

Bubble Rising in Gravity (Re=526, 
We=1.5, aw ρρ / =1000): Fluid-Fluid 
Interface 

0.2 0.4 0.07. 

Table 2.1. Comparison of the scalability of different solvers with increasing grid-
size. As seen in the above table the scalability of the AMG solver is better than that of the 
other solvers for problems with and without embedded interfaces. 
 
Note: The solve time is plotted against the number of computational points in the domain. 
This is a straight line, the slope of which indicates the scalability of the method [154, 
155]. A method with better scalability has a lower slope. This indicates that with 
increasing number of computational points, the performance of a method with better 
scalability gets better when compared to other solvers.  
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Line Solver Algebraic Multigrid Solver / Problem  

Solve 
Time 

Work 
Units 

Fine 
Mesh 
Iteration 

Solve 
Time 

Work 
Units 

Fine 
Mesh 
Iteration 

Flow across cylinder in 
2D (Re=20) 

0.2720 0.187 0.1871 0.2008 0.0744 0.0434 

Flow across cylinder in 
2D (Re=300) 

0.3265 0.186 0.1868 0.1916 0.0717 0.0415 

Bubble Rising in Gravity 
(Re=526, We=1.5, 

aw ρρ / =1000) 

0.8709 0.656 0.6566 0.1195 0.0476 0.0290 

Bubble evolution under 
the action of a peristaltic 
wave (Re=10, We=0.01, 

aw ρρ / =100) 

0.8224 0.704 0.7048 0.3092 0.2067 0.1299 

Flow Across Sphere in 3D 
(Re=100) 

0.5170 0.176 0.1762 0.3269 0.1015 0.0667 

Table 2.2. Quantitative comparison of solver data for different applications.  
 

Note: The recorded data is scaled by corresponding values for a Gauss-Seidel Point 
Solver. For example, the reported value for solve time is the ratio of solve time for Line 
solver or the Algebraic multigrid solver to the solve time for Gauss-Seidel Point solver. 
The other values are reported in a similar way. 
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(a) (b) 

 

Figure 2.1. Demonstration of the Cartesian grid method. The computational domain is 
rectangular and interfaces are allowed to cut across the mesh. (a) Set-up of calculation 
flow calculation in the human stomach. (b) Zoomed-in view to demonstrate placement of 
interfaces.  
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Figure 2.2. Description of the sharp-interface Cartesian grid method. (a) Definition of 
the bulk (clear circles) and interfacial (filled circles) points. The interface is given by the 
zero-Levelset. (b) Standard 5-point bulk point stencil in two-dimensions. (c) The 
configuration of a typical interfacial point. (d) System for evaluating the Neumann 
boundary condition on the interface and evaluation of ghost pressures.  

(a)
)



www.manaraa.com

 

 

 

55

 

IFF 

i i+1 i-1

 

i+2 
ISF 

i+1 i 

Fluid   

i-1 i+2

Liquid 
ISF

i+1 i 

Solid 

i-1 i+2
 

Fluid 1 
IFF ISF

i+1 i 

Solid  

i-1 i+2

 
IFF

Fluid 1 

Fluid 2 Fluid 2

(a) (b) 

(c) (d) 

Fluid1 Fluid 2 Solid 

IFF 

i i+1 i-1

 

i+2 

Fluid 2 Fluid 1 

 

Figure 2.3. Some of the possible interfacial point situations in the two-dimensional 
case. 
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Figure 2.4. General case for formulating discretization at interfaces. This case 
involves solid-fluid and fluid-fluid interfaces. This is same as the case illustrated in 
Figure 2.2(c).  
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Figure 2.5. Illustration of the emergence of points from the solid to fluid phase when 
the sharp interface moves through the mesh. 
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Figure 2.6. Local Coarsening process (a) Full coarsening at first time step (b) Outer 
tube cleared of coarse points when the interface moves (c) Outer tube re-coarsened for 
multigrid without changing coarse points in non-interface cells. 
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Figure 2.7. Solid-fluid-fluid moving interface problem. (a) Bubble evolution when 
subjected to peristaltic wave in a channel. Re=1, We=0.01, aw ρρ / =100. This problem 
involves tracking of fluid-fluid interfaces with the GFM approach for the immersed 
bubble and solid-fluid interface tracking for the moving wall. (b) Comparison of solver 
data for 25 time steps. (LC: Local Coarsening)  
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CHAPTER 3  

LOCAL MESH REFINEMENT 

3.1 Introduction 

A unified formulation of the Sharp Interface Cartesian Grid method for moving 

boundary problems has been developed and validated in the last chapter [92, 96, 159].  

The technique was shown to provide accurate solutions to problems involving solid-fluid 

and fluid-fluid interfaces and interactions between the two types of interfaces. However, 

while Cartesian grid methods allow for calculation of moving boundary problems with 

large deformations without the problems associated with mesh management, the one 

disadvantage of fixed grid methods is the heavy mesh requirement for well resolved 

calculations. Particularly, in calculations such as the mechanical heart valve simulations 

which involve a range of length scales, it is important to be able to adequately resolve all 

the critical length scales. To be able to simulate the problem at physiological Reynolds 

numbers with the realistic dimensions in a reasonable time frame, an adaptive meshing 

scheme is critical. Furthermore, since the mesh is not changed throughout the calculation 

it may be necessary to make intelligent estimates of regions where the interface traverses 

or where flow features such as boundary layers or high vorticity concentrations appear 

and to construct a mesh with required resolution at the beginning of calculation. 

Frequently, in the course of the simulations, it is seen that the region of the domain that 

requires fine resolution changes due to the movement of the interface and developing 

flow features. Resolving the whole domain to the finest resolution results in long 

computation times and overloading of computational resources. Under-resolving the 
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problem will result in loss of small length scale features. The solution is to adaptively 

refine the grid as the problem demands.  

When dealing with problems of disparate length scales encountered in many 

applications, it is necessary to resolve the physically important length scales adequately 

to ensure accuracy of the solution. Various techniques have been proposed to resolve the 

issue of multiple length scales. The commonly used techniques are domain 

decomposition  [137], adaptive mesh refinement (AMR) [12, 14] and local mesh 

refinement [58, 59] techniques. Domain decomposition methods decompose the domain 

into different sections with different meshes and mesh densities. These methods require 

an approximate idea of where the problem demands finer resolution and are hence not 

very versatile in the case of many moving boundary problems that may demand re-

meshing at regular intervals. AMR and LMR schemes are ideally suited for moving 

boundary problems since mesh refinement is solely based on addition/ deletion of 

computational points from the existing grid. The mesh can thus be adapted as, when and 

where the solution demands. 

3.2 LMR vs. AMR 

Adaptive mesh refinement (AMR) [10-14] schemes were first developed for 

compressible flow problems. The main feature of this type of refinement scheme is that 

the flow equations are solved on every level of mesh for every time step with 

interpolations back and forth between the fine and coarse meshes. The problem is first 

solved on a base coarse mesh. Those cells that meet a pre-set refinement criterion are 

tagged for refinement. Optimal rectangular fine meshes are constructed encompassing the 

tagged cells. The flow equations are then solved on this level of fine meshes with the 
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interpolated coarse mesh solution as the initial and boundary conditions. Assuring 

solution continuity at the grid interfaces does not guarantee continuity of solution 

gradient and vice versa. Solution continuity and gradient continuity depend on an 

efficient synchronization algorithm [147] since both cannot be assured at the same time 

by applying boundary conditions. The fine mesh may be further refined if the refinement 

criterion is met and the process repeated. Implementation wise, the AMR scheme is less 

complicated than the other methods. No major changes are required in the data structure, 

discretization schemes or solvers since rectangular meshes are formed at every level. 

AMR schemes have been in use for many years because of the ease of implementation. 

Recent efforts have been made to parallelize AMR [86] as well as to adopt it for 

problems with deformable meshes [7].  

The other mesh refinement scheme that has been widely applied to many 

problems is the local mesh refinement (LMR) scheme. The main difference between this 

scheme and the AMR scheme is that in the LMR scheme, instead of building optimized 

rectangular refined meshes, the existing cells are divided into four or eight cells. The 

computations are performed only on the undivided cells. In the LMR scheme, 

calculations are performed on the coarse mesh. Depending on the refinement criteria, the 

required cells are tagged for refinement. All the tagged cells (parent cells) are then split 

equally into four (2D) or eight (3D) child cells. The discretization scheme is modified so 

that the cells at the top level of refinement are uniformly integrated into the coefficient 

matrix. New cells derive their initial conditions from the solution on the previous level of 

mesh.  Implementation wise, this scheme requires changes in the data structure to add and 

delete child cells as required. Connectivity information on the top layer of cells needs to 



www.manaraa.com

 

 

 

63

be established as well. The mesh becomes more or less unstructured with rectangular 

cells of different shapes. The coefficient matrix assembled in this manner is sparse and 

may require different solvers. However, because fewer number of computational cells are 

included in the solution matrix and the solution for every time step is achieved in a single 

solution step the LMR scheme is an attractive alternative to AMR schemes. Also, since 

the scheme does not require optimized rectangular meshes, required regions may be 

refined without adding more cells than required.   

Local mesh refinement schemes have been applied to many different flow 

problems involving stationary and moving boundaries. A few examples are, flow around 

airfoils [41, 42], low to moderate Reynolds number flows with embedded solid 

boundaries [37, 38], motion of deformable cells [3],  simulation of separated flows [60], 

Levelset advection problems [125-129] and simulation of water and smoke  [94]. All the 

above works report comparable error estimates and speed up when compared to uniform 

fine mesh calculations. For standard test problems presented in the next chapter, the 

solution with grid adaptation has been found to be at least five times faster than that with 

uniform meshes with same resolution in the critical areas and with ten times less number 

of computational cells.  

3.3 Data Structure and Implementation 

In this chapter the sharp interface method discussed in Chapter 2 is extended by 

applying a local mesh refinement algorithm [58, 59, 162] that is designed to allow 

efficient and fast flow computations. Figure 3.1(c) summarizes the sharp interface 

Cartesian grid method with local mesh refinement.  By means of several benchmark 

problems we demonstrate the accuracy of the LMR-supported sharp interface method for 
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a variety of problems. In particular, we demonstrate the capability of the technique to 

resolve boundary layers and other regions of steep gradients in addition to tracking 

moving interfaces. Detailed analysis is presented of the behavior of solution accuracy as 

well as efficiency with the changes in refinement criteria. 

An important aspect of the local refinement scheme is the data structure that maps 

to the structure of the locally refined computational grid. Implementation of the LMR 

scheme requires compatible data structures for cell addition, removal, neighbor finding 

and easy mesh traversal. The quadtree structure in 2D and the octree structure in 3D are 

the most common methods of designing the data structure for local mesh refinement [58, 

61, 110] as shown in Figure 3.2. The hierarchical data structure provides an easy way of 

coarsening and refining cells and finding neighbor connectivities [41, 42]. Greaves et al. 

[58-62] in a series of papers detail the implementation of the quadtree and octree 

structures for local mesh refinement. Various schemes have been tested for the best 

storage and accessibility of data. New indexing and storage schemes and neighbor 

finding algorithms have been shown.  

A variation from the quadtree scheme is [44] to construct a ghost grid at the finest 

level of refinement with the variables being stored and calculations being performed only 

in the active cells. With this type of data structure it is possible to maintain the kji ,,  

format of cell numbering and is hence very compatible with existing FD and FV codes. 

The penalty of this scheme is the increased storage required at least for some variables. 

Linked lists are the other alternative to tree structures [20-22]. Operations such as cell 

removal and addition, neighbor finding and implementation of multigrid strategies are 

relatively difficult when using the linked list data structure.  
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In the present work, the quadtree in two-dimensions and the octree in three-

dimensions has been adopted as the data structure most compatible with local refinement 

schemes. The description of data structure and discretization in this chapter is based on 

the quadtree structure because it is easier to explain. The explanations are easily extended 

to three dimensions. To begin, the domain is divided into a base coarse mesh. Unlike 

schemes which start out with a single cell with the refinement proceeding from there, this 

allows the domain to be divided into an unequal number of cells with no restrictions on 

the cell numbers in each direction. The base mesh is fixed so that the presence of 

embedded objects is identified. Also, since the refinement is solution adaptive, the base 

mesh needs to be fine enough to capture the major flow features. 

 Once the base mesh is fixed, the Levelset is generated on the coarse mesh. Based 

on the coarse Levelset field, the mesh is refined uniformly to as many levels as required 

to a distance of defined by the narrow-band Levelset field (6 cell widths in the present 

case) from the interface location. This is the region within which all the Levelset 

operations are performed and is maintained at a uniform refinement level. The Levelset is 

then re-generated on this fine mesh, such that the shape of the body is resolved 

adequately. To optimize the refinement process and to ensure that there is no spurious 

refinement in regions as the solution evolves from the initial conditions, the solution is 

allowed to develop adequately before the solution based refinement process is started.  

Each cell in the tree structure shown in Figure 3.2 carries with it indices that point 

to its base cell number and its hierarchy in the tree structure. The first index indicates the 

base cell number and the second index indicates the cell position number. A second index 

carries information about the cell level and its position in the grid as: 
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 parent
l

cellcell IPI parent += )10(  (3.1) 

where cellI , parentI , cellP , parentl  are the cell index, parent index, position number of the cell 

(north-east (NE-4), south-west (SW-1), south-east (SE-2), north-west (NW-3) in 2D and 

bottom-north-east (BNE-4), bottom-south-west (BSW-1), bottom-south-east (BSE-2), 

bottom-north-west (BNW-3), top-north-east (TNE-8), top-south-west (TSW-5), top-

south-east (TSE-6), top-north-west (TNW-7) in 3D) and parent cell level respectively. 

Using these indices, the south-west (SW) child of the north-east (NE) child of base cell 

number 56 is identified by the indices (56, 041). Simple mathematical operations on the 

indices identify the exact location of the cell, its level and position in the tree structure. 

Each cell also carries pointers to its parent cell and child cells. Neighbor information is 

obtained from the tree structure as described in detail in the next section. When a cell is 

refined, memory is allocated to its child cells and when coarsened, memory to the child 

cells is de-allocated. Neighbor connectivities can be found by logical operations while 

traversing the data tree. Pointers to the neighbor cells are stored in the data structure to 

avoid time consuming logical operations each time connectivity information is required. 

The flow equations are solved on the top-layer of cells which are typically called ‘leaf 

cells’ in LMR terminology. Flow variables are stored on each leaf cell. Except for the 

leaf cells, all the other cells essentially support the data structure and are allocated 

minimum memory.        

The Fortran code for the cell type is shown in Figure 3.3.  The variable names are 

self-explanatory. Each cell in the data structure can be accessed in the code by recursive 

functions traversing the data tree. To avoid complexity of implementation of 

discretization schemes, the refined grid is smoothed to assure that no two neighboring 
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cells have more than a level difference between them. 

3.3.1 Finding Neighbors 

The locally refined mesh is highly unstructured. Pointers to neighbor cells are 

stored within the cell structure shown in Figure 3.3 to avoid the time intensive tree 

searches. The connectivity information stored in each cell is used in aiding neighbor 

searches. As a demonstration, consider the cell configuration shown in Figure 3.4(a). The 

numbers indicate the indices of the cells in the quadtree. The first index indicates the base 

mesh cell number and the second index reveals the location and level of the cell using the 

indexing system described in the previous section. For instance, the north neighbor of the 

cell indicated by the index (3,40) is found by accessing its parent cell (3,0). The north 

neighbor of the parent cell (3,0) in this case is (1,0). This cell is examined to decide if its 

is divided or not. In this particular case, it is an undivided cell. If this cell is undivided, 

then the pointer to the north neighbor of cell (3,40) is set to the cell (1,0).  

Similarly, in searching for the east neighbor of the cell (3,40), the parent cell (3,0) 

is accessed. The east neighbor of the parent cell in this case as shown in Figure 3.4 is the 

cell (4,0). This cell is divided. Therefore its child cells are accessed to find the neighbor 

of the cell (3,40). The index ‘40’ indicates that it is the north –east child cell of its parent. 

The east neighbor of the north-east child cell is necessarily the north-west child cell of 

the parent’s neighbor. Hence the pointer to the east neighbor of the cell (3,40) is set to 

point to the cell (4,30). In case of the west neighbor of the cell (3,40), the search is 

relatively straight-forward. The west neighbor cell of a north-east child cell is necessarily 

the north-west child of its parent cell. Hence the cell (3,30) is the west neighbor of the 

cell (3,40). The logic works similarly in case of an octree in three dimensions. The rules 
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that govern neighbor searches in case of a north east (NE) child cell are shown in Figure 

3.4(b). The logic works similarly in case of the other child cells as well. It may be noted 

that a cell is allowed to have only one neighbor in any direction which implies that a cell 

may have a neighbor which is at a level equal or lower than itself. A leaf cell can thus 

have divided neighbors.  

3.4 Discretization at Mesh Interfaces 

Various approaches are found in literature for the discretization across mesh 

interfaces [94]; [58, 59]; [20, 21]; [3, 44, 150, 152, 153]; [110] with and without 

embedded objects. Most of the previous works use finite volume formulations with the 

exception of Durbin et al. [44] who use a finite difference formulation. The main 

challenge in formulating a viable discretization scheme is the issue of mass conservation 

across mesh level interfaces. With finite difference schemes this is relatively more 

difficult to achieve than with finite volume schemes. Additional complexity is introduced 

by the embedded boundaries because the discretization as well as the cell refinement has 

to take into account the way in which the cells are being cut by the interfaces [37, 38]. In 

2D this is relatively straightforward but in 3D this may be a formidable task because of 

the orientations of various cut cells. In the present work, simplicity of discretization at 

interfaces is preserved by a finite difference formulation at the interfaces. For additional 

simplicity, the mesh is refined uniformly to the same level up to a few grid cells from the 

interface. Though this may result in a few cells being refined unnecessarily the 

formulation remains relatively simple.  Removal of this restriction on the refinement, 

while maintaining the simplicity of the sharp interface method is the subject of ongoing 

work. 



www.manaraa.com

 

 

 

69

In this work a mixed scheme is used for the discretization of the governing 

equations. For cells without refinement boundaries or interfaces cutting across them, the 

finite difference and finite volume formulations are identical. For the cells with an 

embedded boundary cutting across them the finite difference scheme as discussed in 

Chapter 2 is retained as it is far simpler than a finite volume scheme, especially in 3D. 

The method has been rigorously tested and validated for different applications [92, 96, 

141-144, 159] With the refinement scheme proposed by Sochnikov et al. [121] where all 

the cells up to a certain distance from the interface are always refined to the finest level, 

the formulation for interface cells does not need to be modified. For mesh interfaces, a 

finite volume scheme is adopted to ensure mass conservation. Therefore, for the mesh 

interfaces a ‘ghost cell’ approach is implemented as explained below.  

While refining cells, it is ensured that no two neighboring cells have more than a 

level difference between them. This ensures that only two specific configurations need to 

be addressed when discretizing the governing equations across mesh interfaces. The two 

configurations are shown in Figure 3.5 and the discretization schemes for each case are 

discussed below. For simplicity, the discretization of the equations is explained in 2D. 

Since the discretization is chiefly dependent on interpolations and the fluxed are 

assembled independently in each coordinate direction, extension to 3D is straightforward.  

3.4.1 Case (a) Neighbor Cell is Divided 

Figure 3.5 (a) shows the  configuration in question. As seen in the figure, cell P  

is a leaf cell and its west neighbor W  is divided. The discretization across the mesh 

interface is demonstrated for the Laplace operator, ψ2∇ . Equation (3.2) shows the 
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discretization of the diffusion operator for the variable ψ .   
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f  represents the flux across the cell face. The flux from each of the west faces 

( 1wf , 2wf ) into the current cell. For instance, the fluxes into each cell face are calculated 

as follows in Equation (3.3). Note that ∗
1P and ∗

2P are ghost cells. The variables ∗
1P

ψ  and 

∗
2P

ψ  are interpolated at these locations from the surrounding cells by bi-linear weighted 

averaging as shown in the configuration shown in Figure 3.5(a) case by Equation (3.4).   
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 NWNWPP
ψψψψψ 0625.01875.01875.05625.0

1
+++=∗  (3.4) 

Since cell W  is divided, the variable value Wψ  is interpolated bi-linearly from 

the surrounding leaf cells as: 

 ( )432125.0 wwwwW ψψψψψ +++=  (3.5) 

Putting everything together,  
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 ( ) NWNwwwwPP
ψψψψψψψψ 0625.01875.0046875.05625.0 43211

++++++=∗ (3.6) 

And 

 
( )

( )4321

43212

015625.0

1875.0046875.05625.0

SWSWSWSW

SwwwwPP

ψψψψ

ψψψψψψψ

+++

++++++=∗

 (3.7) 

The above ‘ghost’ quantities are substituted into Equation (3.3) to obtain the 

fluxes which are in turn substituted in Equation (3.2) to obtain the discretization of the 

Laplace operator.  Finally, the stencil for Pψ2∇  in Figure 3.5(a) includes all the 

surrounding neighboring cells as shown in Equation (3.7).  

 ),,,,,,,,,,,( 4321,4321
2

SWSWSWSWNWSNWWWWEPP f ψψψψψψψψψψψψψψ =∇        (3.8) 

The advection operators are discretized in a similar fashion but treated explicitly  

in time. 

3.4.2 Case (b) Neighbor Cell Level Lower than Current Cell 

Figure 3.5(b) shows the situation where the current cell P  is at a higher level in 

the quadtree than its east ( E ) and north ( N ) neighbor. In an approach similar to that 

presented in Section 3.4.1, the discretization of the diffusion operator is shown in 

Equation (3.2). The calculation of flux from the east neighbor is presented here. A similar 

approach is implemented for the north neighbor. The fluxes from the cells are calculated 

as: 
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Again, ∗E  and ∗N  are ghost points where variable values ∗E
ψ  and ∗N

ψ  are 

interpolated from surrounding points for the configuration shown in Figure 3.5 as: 

 NENPEE
ψψψψψ 0625.01875.01875.05625.0 +++= ′∗  (3.10) 

 NEEPNN
ψψψψψ 0625.01875.01875.05625.0 +++= ′∗  (3.11) 

where P′ψ is interpolated bi-linearly from its child cells as 

 ( )SWWSPP ψψψψψ +++=′ 25.0  (3.12) 

To summarize, the ghost point values are calculated as: 
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∗
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(3.13) 

Finally, the stencil for the Laplace operator at cell P  is a function of all its 

surrounding cells and the discrete operator can be written as: 

 ),,,,,,(2
SWNESNWEPP f ψψψψψψψψ =∇  (3.14) 

3.5 Velocity Correction 

Calculation of face velocities across mesh interfaces proceeds in a manner similar 

to that employed in discretizing the Laplace operator as described in the previous 
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sections. Cell face values are linearly interpolated between the cell center values and the 

‘ghost cell’ values described in the previous sections. It may be noted that the cell face 

velocities are calculated in a similar fashion. The flow variables at the ‘ghost cell’ 

location are linearly interpolated from the surrounding cells. 

In the first case shown in Figure 3.5(a) where west the neighbor cell is divided, let 

the west face value of a variable ψ  be indicated by wψ .  
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Variables values at ∗
1P and ∗

2P are ghost cells. The variables ∗
1P

ψ  and ∗
2P

ψ  are 

interpolated at these locations from the surrounding cells by bi-linear weighted averaging 

as shown in the configuration shown in Figure 3.5(a) case by Equation (3.4) to Equation 

(3.7). Putting everything together, the face value wψ  is interpolated from all the 

surrounding cells similar to that shown in Equation (3.8). 

 ),,,,,,,,,,(
43214321 , SWSWSWSWNWSNWWWWPw f ψψψψψψψψψψψψψ =  (3.16) 

Similarly, in the case of a cell whose neighbor is at a lower level as shown in 

Figure 3.5(b), calculation of a variable on the east face, eψ  proceeds as follows: 

 )(5.0 * PEe ψψψ +=  (3.17) 
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Again, ∗E is a ghost point and variable value ∗E
ψ  is interpolated from 

surrounding points for the configuration shown in Figure 3.5(b) as shown in Equation 

(3.10). Finally, the stencil for calculation of the east face variable value for the cell P in 

Figure 3.5(b) is: 

 ),,,,,,(2
SWNESNWEPP f ψψψψψψψψ =∇  (3.18) 

Velocity correction proceeds at mesh interfaces by calculating the cell face values 

of pressure. Then gradient of pressure is then calculated using these cell face values and 

the velocities are corrected as detained in Equation (2.13).  

3.6 Applying Boundary Conditions 

In normalizing the refined mesh, boundary cells are refined to the same level as 

their adjacent interior cells as shown in Figure 3.6. The refinement proceeds in the same 

way as for interior cells with each boundary cell being divided into four child cells 

(instead of two) in 2D. This is done to avoid the complexities that arise in code 

implementation for the data structure as well as discretization schemes. However, as seen 

in the figure, of the four child cells, only two are effectively included in the discretization 

schemes. For instance, Figure 3.6 shows refinement at the east domain boundary. As seen 

in the figure, the NE and NE neighbors, indicated by 43, EE and the SW and SE 

neighbors indicated by 21, EE  coincide. These cells have the same cell center locations 

and variable values. The same is also true of the west boundary. For the north and south 

boundaries, the NE and SE child cells and NW and SW child cells also coincide. In 3D, 

the boundary treatment proceeds in a similar way. The discretization at the boundary cells 
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is similar to that described in sections 3.4.1 and 3.4.2. However, in case of Neumann 

boundary condition the stencil is modified to implicitly apply the boundary condition. 

For the situation shown in Figure 3.6, for the cell  P, assembly of the east, west 

and north side fluxes is straightforward with the discretization following the standard 

central difference scheme because there are no cell level differences. However, the south 

neighbor of the cell is one level lower than cell P. The south side flux required for 

discretization as shown in Equation (3.2) can be written as: 

 x
y

f PS
s Δ⎟⎟
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=
ψψ *  (3.19) 

∗S  is a ghost point where variable values ∗S
ψ  is interpolated from surrounding 

points for the configuration shown in Figure 3.6 as: 

 )(375.0)(125.0 ''* SESPES ψψψψψ +++=  (3.20) 
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On substituting Equation (3.21) into Equation (3.20), the ghost point value is 

obtained as: 

 )(375.0)(03125.0)(0625.0 31* SESWNWNPEES ψψψψψψψψψ +++++++=  (3.22) 

If Dirichlet boundary conditions are to be applied, then the ghost point value 
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obtain in Equation (3.22) is substituted into Equation (3.19) and the flux on the south face 

is calculated. If Neumann boundary conditions are to be applied then the stencil is 

modified to implicitly apply a zero-gradient condition at the interface. If the gradient at 

the domain boundary is zero, then for the case illustrated in Figure 3.6, the following is 

true: 
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Applying the above condition in Equation (3.22), the ghost point value is 

modified as: 

 SWNWNPS ψψψψψψ 75.0)(03125.0)(09375.0* ++++=  (3.24) 

With this alteration, the assembly of fluxes and the discretization proceeds as 

described previously.  

3.7 Representing Interfaces 

Various approaches of representing the interface have been coupled with LMR for 

different applications. Agresar et al. [3] demonstrated the use of front tracking methods 

for interface representation with adaptive grids. Volume of Fluid (VoF) methods also 

have been applied for many cases involving flow across embedded boundaries as well as 

free surface flows [58-62, 110, 152, 162]. Interface reconstruction using different 

schemes have been discussed with the VoF approach. Strain [125-129] in a series of 

papers has demonstrated use of Levelsets to represent and move interfaces on quadtree 
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meshes. The issue of re-distancing and velocity extension on quadtree meshes has also 

been addressed. To minimize interpolation errors of all variables close to the interface 

and also to simplify the implementation of discretization schemes for the Levelset 

functions as well as the state variables at the interface cells, the present method adopts the 

scheme adopted by Sochnikov et al. [121], where cells close to the interface up to a 

certain distance are refined uniformly. The boundary layer build-up close to the 

immersed boundaries cause mesh adaptation in these regions even without forcibly doing 

so. Furthermore, with this method, the discretization scheme at the interfaces does not 

need to be altered and the same finite difference scheme can be maintained as detailed in 

Chapter 2 and previous work [92, 96, 142, 144, 159].   

3.8 Solver Issues and Multigrid 

On a locally refined grid, the cell numbering is no longer ordered and hence the 

coefficient matrix becomes highly sparse and asymmetric. Besides, the discretization 

scheme uses many interpolations from surrounding cells depending on the cell 

distribution structure and hence the penta- or septa- diagonal structure no longer exists 

even if the numbering is ordered. There is a need for efficient sparse matrix solvers for 

fast convergence of solution [152]. Structured solvers such as the LineSOR can no longer 

be used. Most researchers use sparse solvers such as the GMRES or the BiCGStab [94] or 

preconditioned conjugate gradient schemes. Agresar et al. [3] use SPARSKIT modules 

for incomplete factorization and conjugate gradients to solve the sparse matrix. Lasasso 

et al. [94] present a new discretization scheme for the pressure Poisson equation which 

ensures symmetric matrices that can be solved by ordinary solvers.  Multilevel Multigrid 

methods have been explored [2, 153, 166] successfully to speed up the convergence of 
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the pressure solver. The Multigrid methods are found to be naturally amenable to locally 

refined meshes since the coarse grid information already exists within the grid hierarchy. 

Coarse grids can be formed by coarsening the tree structure. Connectivity and 

interpolation are easily done within the grid hierarchy.  

Though the algebraic multigrid scheme with local coarsening is very efficient 

when applied to moving boundary simulations by the Sharp Interface Cartesian Grid 

method, it is found that when the mesh is refined and coarsened by the LMR scheme, 

building the coarse and fine meshes for the AMG solver needs to be performed each time 

the mesh and numbering is changed. Within the present framework of implementation of 

the AMG solver, this is found to be highly inefficient and time consuming. Improvement 

of the AMG scheme within the framework of the LMR scheme falls out of the scope of 

the present thesis and hence presently, a preconditioned BiCGStab is adopted as the 

solver. The convergence of the solver is not found to be significantly affected due to the 

highly sparse and unstructured nature of the coefficient matrix.  

3.9 Interpolation Schemes 

Often, variable values need to be interpolated onto locations other than at cell 

centers of the ‘leaf cells’ where the variables are stored. For instance, when new cells are 

formed by refinement or coarsening, the initial values on these new cells needs to be 

obtained by interpolation from the cells existing at the previous time step. Thus, another 

critical element of the local refinement method is the interpolation scheme. The current 

method uses a simple bi-linear weighted averaging over the leaf cells to interpolate 

variables. Figure 3.7 (a) shows a particular situation. The variables values at the point 

),( yx  in any configuration of surrounding cells are linearly interpolated from the cells 
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surrounding it as shown in the Figure 3.7(a).  

3.10 Higher Order Discretization for Explicit Terms 

In the solution of the scalar transport equation, the central difference scheme is 

not stable when the equation is advection dominated. In this case, higher order schemes 

have to be used for discretization of the convection terms. A 4th order ENO type scheme 

is adapted for the discretization of the convection terms. At the mesh interfaces, as shown 

in Figure 3.7(b), four equidistant points in each direction are included into the 

discretization. Each of these points required in discretization are interpolated from the 

surrounding cells as detailed in Section 3.9.  

3.11 Refinement Criteria 

The third critical element that governs the local refinement scheme is the 

refinement criteria. Refinement criteria are selected based on the specific application 

under consideration. Cells may be refined either on geometry based or solution based 

criteria. The best choice of refinement criteria is one that gives a smooth distribution of 

the error throughout the domain.   

The most commonly used criteria include solution gradient, curvature, presence of 

the boundary, local Peclet numbers and vorticity strength. For instance, Coirier et al. [37, 

38] in their Cartesian grid based finite volume formulation for flows with embedded solid 

objects, use the local velocity divergence to detect compressibility and velocity curl to 

detect shear.  Lasasso et al. [94] use multiple refinement criteria including object 

boundaries, optical depth and vorticity concentration. Trompert et al. [136] use a 

curvature monitor or second gradient based criterion to determine the cells that need to be 
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refined. Strain [125-129] uses a Levelset function based refinement criterion such that 

any cell whose edge length exceeds its minimum distance to the zero Levelset is split. 

Sochnikov [121] recommends refinement to the finest level up to a certain distance from 

the interface so as to avoid interpolation errors at critical locations close to the interface. 

Agresar et al. [3] also use the intersection by the interface and proximity to walls as 

refinement criteria besides additional criteria based on gradients of state variables. A 

detailed analysis of refinement criteria and effects is found in  [41, 42]. In the present 

work, it is proposed to adopt Sochnikov’s [121] method of uniform refinement up to a 

certain distance from the interface. In the present work first and second gradients of the 

flow variables are adopted as refinement criteria. Second gradients help identify 

boundary layers while first gradient identifies features such as shocks. Presently, cells are 

marked for refinement when 

 ε
ψ
ψα

ψ
ψα >⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∇∇ 2

0

2

0
,max hh cg  (3.25) 

where ε  is the error tolerance, 0ψ is a characteristic value of the variable ψ , xh Δ~  is a 

characteristic length scale of the cell and cg αα ,  are the relative weights of the gradient 

and curvature based criteria respectively. cg αα ,  depend on which flow characteristics 

need to be resolved better for the specific problem. Resolving boundary layers requires 

the curvature based criterion to be heavily weighted while resolution of shocks requires 

gradient based criterion to carry heavier weight. 
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3.12 Overall Algorithm of the Local Mesh Refinement Scheme 

The overall algorithm for the local refinement scheme is shown below: 

1. Tag cells for refinement based on refinement criterion discussed in Section 3.11.  

2. Create new cells or remove un-necessary ones based on step 1. If a cell is created, 

memory is allocated to the child cell pointers shown in the pseudo-code in Figure 3.3.  

3. Re-build the neighbor connectivity information.  

4. Normalize the grid to ensure that no two neighboring cells have a cell level difference 

of more than one. Boundary cells are necessarily of the same level as the adjacent 

interior cells. These operations may involve creation of new cells. 

5. Re-build neighbor connectivity such that the newly created cells are included. 

6. The new ‘leaf’ cells are re-numbered and a pointer array pointing to all the leaf cells 

is initialized on the newly formed mesh. Henceforth, unless absolutely necessary, all 

the operations are performed by this pointer array. Tree searches can be time 

intensive and hence operation through this pointer array is highly efficient.  

7. Initialize flow variables on the newly created cells. Coarsened cells, which have their 

child cells removed are initialized with interpolated values of the removed cells. 

Newly created cells are initialized with interpolated values from the previously 

existing cells. 

8. All the flow variables on cells other than the leaf cells which are on the top layer of 

the tree are de-allocated. Only the connectivity information is maintained on all the 

cells in the tree. All the rest of the variables seen in the pseudo code in Figure 3.3 are 

de-allocated. 
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9. Boundary conditions are re-set so that newly formed boundary cells have the right 

values. 

10. All the interface parameters such as interface normal required by the interface 

advection scheme are re-generated.  

3.13 Integrating the LMR Scheme with the Sharp Interface Solver 

Integration of the local refinement algorithm into the Sharp Interface Cartesian 

Grid Solver discussed in Chapter 2 is shown in Figure 3.8. The initial rectangular mesh 

set-up is simplified by the integration of the local mesh refinement scheme. The only 

restriction is that the base mesh must be fine enough to resolve the rough shape of the 

immersed object such that three or four mesh cells are formed across the narrowest 

portion of the geometry. After setting up the base mesh, the Levelset is generated on this 

coarse mesh. The mesh is then refined uniformly to a pre-set number of levels in the 

region surrounding the interface. The Levelset field is then re-generated on the newly 

refined mesh. This ensures that the geometry is well resolved and the calculation 

proceeds in the normal fashion from this point on.  

Flow calculation is allowed to proceed to a pre-set number of time steps to ensure 

that all the artifacts of the initial conditions are eliminated before adaptive mesh 

refinement is started. This ensures that no spurious refinement of mesh occurs because of 

numerical artifacts. As shown in the Figure 3.8, the local mesh refinement scheme is 

inserted into the overall algorithm before the Levelset advection and the flow solver.  

Local refinement operations shown in the previous section are essentially time 

consuming. Since the flow patterns and interface locations are not expected to change 

drastically at every time step, the refinement process is invoked periodically. If the 
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refinement scheme is operated every 10 time steps on an average it requires less than 5% 

of overall solve time depending on the problem at hand. Each time the mesh is refined or 

coarsened, variables values on the new cells are initialized by interpolation from the 

existing cells at the previous time step before proceeding to advect the Levelset and solve 

for the flow. 

The particle tracking algorithm functions as previously except for the 

interpolation of flow quantities from the refined mesh as discussed in Section 3.9.  
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Figure 3.1. Sharp interface Cartesian grid method. (a) Demarcation of bulk cells and 
interface cells. (b) Details of discretization of interfacial cells. (c) Summary of Cartesian 
grid method with local mesh refinement.    
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 (a) 

 

(b) (c) 

 

Figure 3.2. Data structure for the local refinement scheme. (a) Quadtree data structure. 
Leaf cells are marked with filled circles. (b) Locally refined mesh corresponding to the 
quadtree structure in (a). (c) Numbering scheme for child cells. 
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TYPE :: cell_type 
     INTEGER, DIMENSION(2) :: index 
    INTEGER :: lindex 
    INTEGER :: level , status 
  REAL :: u, v, phi, LS           !1,2,3,4 

REAL :: xc , yc 
  REAL :: dxp , dyp 
  TYPE(cell_type), POINTER :: parent 
  TYPE(cell_ptr), DIMENSION(CURRENT:MAXNBR) :: nbrindex 
  TYPE(node_ptr), DIMENSION(1:4) :: cellnode 

TYPE(cell_type), DIMENSION(:), POINTER :: child 
TYPE(node_type), DIMENSION(:), POINTER :: childnode 

  END TYPE cell_type 
 
  TYPE :: cell_ptr 
     TYPE(cell_type), POINTER :: cptr => NULL() 
  END TYPE cell_ptr  

Figure 3.3. Code for quadtree implementation in FORTRAN 90. The above shows the 
structural components of each computational cell in 2D. 
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a) N neighbor of NE child : SE child of N 
neighbor of parent cell 

b) E neighbor of NE child: NW neighbor of E 
neighbor of parent cell 

c) W neighbor of NE child: NW child of parent 
cell 

d) S neighbor of NE child: SE child of parent cell. 
 

 

Figure 3.4. Demonstration of neighbor search operation. (a) Sample of a mesh 
interface. The process of finding the neighbors of cell (3,40) is illustrated in the text. (b) 
Thumb-rule for finding the neighbors of the NE child of a cell.  
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Figure 3.5. Two cases for which discretization has to be formulated. (a) Neighbor cell 
(WEST) is a level greater than current cell. (b) Neighbor cells (EAST and NORTH) are a 
level less than the current cell. 
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Figure 3.6. Treatment of boundary points and inclusion in the discretization scheme.  
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Figure 3.7. Higher order discretization. (a) Bi-linear interpolation at mesh interfaces. 
(b) Higher order scheme at mesh interfaces. Points used for discretization at point P are 
indicated with filled circles.  
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Figure 3.8. Inserting the local mesh refinement algorithm into the larger scheme of 
things. 
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CHAPTER 4  

VALIDATING THE LOCAL REFINEMENT SCHEME 

The local mesh refinement scheme implemented with the sharp interface 

Cartesian grid method is applied to a variety of applications and its efficiency and 

accuracy are tested. The scheme is then applied to a variety of problems that involve a 

wide range of length scales and which require heavy meshes (large number of 

computational cells) for computation in the absence of local refinement schemes. The 

main aim of this chapter is to demonstrate the efficacy and efficiency of the scheme when 

applied to a variety of moving boundary problems with sharp interface method. From the 

detailed analysis, the goal is to arrive at an estimate of required mesh density needed for 

accurate solutions, as well as the base mesh size and refinement levels to be used.  

4.1 Validation and Timing Studies 

Three benchmark problems ((i) lid-driven cavity flow, (ii) flow across cylinders 

and (iii) phase-change with dendrite growth) are considered to validate the local mesh 

refinement scheme. The main aim of this exercise is to optimize the scheme for base 

mesh cell size ( basexΔ ) and to determine the optimum number of refinement levels to 

optimize the fine mesh cell size ( refxΔ ) and the tolerance limit (σ ) to optimize the 

speed-up and accuracy obtained over a uniform fine mesh solution. When the mesh is 

coarsened to speed-up the solution process, it is natural that some accuracy is lost in the 

overall solution. The key is to find an optimum balance between solution accuracy and 

speed-up. The refinement, solution accuracy and speed-up are controlled by the above 
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parameters and hence they need to be optimized. The solution from the different 

exercises by varying the parameters is also tested for accuracy. The first set of studies is 

aimed at fixing the finest mesh resolution required to obtain grid independent solutions 

for three benchmark problems. The second set constitutes tests to optimize the base mesh 

size and the maximum number of refinement levels allowed, obtaining the fastest results 

for optimum accuracy. The third set of cases is aimed at fixing the tolerance limit for the 

refinement criteria that optimize speed up and accuracy. The parameters are optimized to 

obtain an error level of less than 5% in the solution. 

4.1.1 Lid-Driven Cavity Flow 

The lid-driven cavity flow is one of the most studied fluid problems and has been 

well documented [54]. This problem is chosen as the first test to benchmark the locally 

refined flow solver and to test its efficiency. Though this problem does not include any 

embedded boundaries, the factors that make it interesting for a locally refined calculation 

are the boundary layer separation and shear layers that arise from the moving lid of the 

cavity. As the flow evolves, the vorticity layers are seen to separate from the walls and 

concentrate in the center of the cavity. At steady state, a relatively large area of the flow 

domain has recirculating fluid. Based on the refinement criterion, a large fraction of the 

domain is likely to be refined at steady state as shown in Figure 4.1 (a) and Figure 4.1 (b) 

for 1000Re =  and 10000Re =  respectively. However, the local refinement scheme 

speeds up the computation time in the initial stages of calculation when the flow 

dynamics is in the developing stages. Though this problem does not demonstrate 

dramatic speed-up by using the LMR scheme, it is an ideal problem to ensure the 

accuracy and conservation properties of the scheme, particularly for mass conservation 
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on mesh boundaries. In this case, the characteristic velocity that controls the refinement 

criterion is fixed as 1.0, which is the horizontal velocity of the lid at the top boundary. 

Figure 4.2 shows the comparison of centerline velocities obtained from the current 

locally refined calculation with published data [54]. The data is presented for a base mesh 

size basexΔ = 0.08 and a maximum of 5 levels of refinement allowing the finest mesh cell 

size to be refxΔ =0.005. Table 4.1, Table 4.2 and Table 4.3 document results of speed-up 

and accuracy studies for the lid-driven cavity flow. The first set of calculations (Table 

4.1) are aimed at deciding the finest mesh size required to obtain grid independent 

solutions. Previous studies have reported [54] that a cell size of refxΔ =0.0077 is adequate 

to obtain grid independent results. Starting with a base mesh size of basexΔ =0.16, the 

number of allowed refinement levels is increased until grid independent results are 

obtained. The solutions are compared with a uniform fine mesh ( refxΔ =0.005) calculation 

and 2L  norm of the error is calculated. The tolerance limit σ  is specified as 5% for the 

refinement criterion. As seen from the table, a fine mesh cell size of refxΔ =0.01 with 5 

refinement stages is found to be adequate for grid-independent results. As the number of 

maximum refinement levels is increased, the speed-up obtained is decreased due to 

additional cells being added and tree operations increasing. Also, the percentage of time 

required for the refinement operations shows an increasing trend as the number of 

maximum refinement levels is increased.  

For a maximum allowed 6 levels of refinement, almost 17% of the total CPU time 

is taken up by the refinement operations due to the quadtree searches. As the solution 

approaches steady state, the high vorticity region covers most of the computational 



www.manaraa.com

 

 

 

95

domain and most of the domain is covered by a fine mesh. Hence the large amount of 

time taken up by the refinement operations. For six levels of refinement, at steady state 

the number of cells is about half the number of cells in the case of a uniform grid (with 

the finest mesh spacing) calculation.  It may be noted however that these observations are 

specific to the present driven cavity flow problem where the domain is closed and the 

vorticity produced within the domain cannot exit the domain. Table 4.2 shows 

optimization tests with respect to base mesh cells size while holding the fine mesh cell 

size fixed at refxΔ =0.005. As seen from the table, 4 levels of refinement shows 

maximum speed-up. Beyond 4 levels, the tree operations slow down the calculation 

considerably. Table 4.3 shows tests to optimize the tolerance limit using base mesh size 

and finest mesh size optimized from 1(a) and 1(b). A tolerance limit of 10% is found to 

be adequate to obtain comparable error. This also shows a 10-fold speed up over a 

uniform mesh solution. In the lid-driven cavity case the refined solution and speed-up is 

found to be highly dependent on the base mesh cell size and number of refinement levels 

used.   

4.1.2 Flow Across a Cylinder 

The same tests above are performed for flow over an immersed cylinder. The 

sharp-interface method is tested in conjunction with the local mesh refinement scheme in 

this case for a stationary cylinder. The computational domain is 30x30 square units with 

an embedded cylinder with diameter of 1.0 unit. The domain size is much bigger than the 

cylinder size to avoid any effects of boundary conditions on the flow dynamics near the 

cylinder. Far field boundary conditions are fixed by the potential flow solution. The flow 
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variable that controls refinement is fixed as 1.0 which is the velocity at the flow inlet. The 

base mesh is uniform. Figure 4.3 shows the vorticity contours and corresponding refined 

mesh for flow over cylinders at Re =20 and Re =300. Figure 4.4 shows the drag and lift 

from the current refined mesh calculations for base mesh size of 0.64 and 5 levels of 

refinement. The steady state drag coefficient from previously published results [96, 160] 

at Re =20 is between 2.03-2.08 and the length of the recirculation zone is 0.93 d  where 

d  is the diameter of the cylinder.  

From the grid refinement study shown in Table 4.4, a fine mesh cell size of 

refxΔ =0.04 is seen to be sufficient to obtain grid independent results. A 100 time speed-

up is obtained in this case with an error in calculated drag and length of recirculation 

zone of less than 1%. Unlike the lid driven cavity case, the fine mesh in this case is 

concentrated on a small portion of the domain, close to the cylinder and a very small 

fraction of cells are refined and the calculation speeds up corresponding to increasing 

base mesh cell size for the same size of the fine mesh. Table 4.5 shows studies to 

optimize the base mesh. The maximum base mesh cell size basexΔ =0.64 is fixed based on 

the size of the cylinder. The base mesh cell size has to be smaller than the cylinder size 

for the Levelset to be recognized in the initial step before a locally refined mesh is 

created. In this case, CPU time correspondingly decreases as the base cell size is 

increased without significant effect on the accuracy of the solution. Table 4.6 shows 

studies to establish the tolerance criterion to be used. A tolerance of 5% gives 

independent results with a 100-fold speed-up. A Reynolds number of 300 shows unsteady 

flow with periodic shedding of Karman vortices. Figure 4.3(b) shows the instantaneous 

vorticity contours and corresponding mesh. The shedding frequency corresponds to a 
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Strouhal number of 0.21 and average drag coefficient of 1.38 which correspond to 

previously published data [96, 160].   

In the case of flow over immersed bodies, the high vorticity region is concentrated 

near the surface of the immersed object and this is the region that requires highly refined 

meshes. These kinds of problems are ideally suited to local refinement schemes for fast 

calculations.  

4.1.3 Impulsively Started Cylinder 

The impulsively started cylinder is studied as a prototype of unsteady separated 

flows and has been the subject of many theoretical, computational and experimental 

works [82]. Koumoutsakos and Leonard [82] in their work provide extensive information 

for quantities of interest such as vorticity field, streamlines and body forces that are valid 

for short times for a range of Re from 40 to 9500 through highly resolved numerical 

simulation by using vortex methods. Impulsively started flows present a serious challenge 

for numerical methods, because high resolution simulations are necessary for high 

Reynolds numbers to adequately resolve the singular character of the flow at early times 

and to resolve the details of the separation process. Two Reynolds numbers are 

considered in the current simulations. One on the lower end, with Re=1000 and one on 

the higher end with Re=9500. A rough estimate of boundary layer thickness by 

Re/1≈δ  enables us to fix the minimum mesh size for the calculations. Typically 

about 10 cells are required within the boundary layer to capture the boundary layer 

dynamics accurately. This estimate is shown to obtain mesh independent results in the 

previous bench mark cases. For the simulation with Re=1000, a uniform base mesh with 
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a spacing of 0.64 is used. A rough estimate of boundary layer thickness shows that a fine 

mesh size of about 0.003 is required to capture the boundary layer dynamics.  

Therefore, a maximum of 8 refinement levels corresponding to a cell size of 0.005 

is allowed near the interface cells. The flow domain size is 30x30 units, while the 

cylinder diameter is 1. The large domain size relative to the cylinder size is required to 

minimize the effects of the far-field boundary conditions. For the simulation with 

Re=9500, a uniform base mesh with a grid spacing of 0.16 is used with 8 levels of 

refinement around the interface reducing the minimum cell size to 0.00125.  The cylinder 

is impulsively started with a velocity of 1.0 and calculations in the first 5 non 

dimensional time units is recorded and compared with results from [82].  The cylinder 

velocity is the characteristic velocity used in the refinement criterion to control 

refinement. Figure 4.5 shows the flow development for Re =1000 for time T = 2.0, 4.0, 

5.0 and 6.0 with flow patterns for the corresponding time instances presented by 

Koumoutsakos and Leonard [82]. The flow patterns correspond to those presented in  

[82].  

Figure 4.6(a) shows body vorticity recorded in the current simulations compared 

with published results in [82] for Re=1000. Figure 4.6 shows the evolution of drag with 

time compared with published data. Figure 4.6 (c) and (d) show the body vorticity 

magnitude from the present simulations at various time instants presented in [82].  Figure 

4.7 shows comparison of flow patterns for Re=9500 compared with published results in 

[82]. Figure 4.8 shows the same calculations for Re =9500. Figure 4.8 shows the 

evolution of flow at various time instants of the simulation. Figure 4.9 (a) shows 

instantaneous vorticity contours and corresponding refined mesh (b) for this simulation. 
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As seen in the figure, the calculation is well resolved with about 10 mesh points placed 

within the boundary layers. In Figure 4.9 (c) and (d) the boundary layer is zoomed in and 

details are shown. Figure 4.10 (a), (b) and (c) shows the body vorticity from the present 

calculation at the time instants presented in  [82] for Re=9500.  

Thus the method is seen to be efficient and robust in solving unsteady separated 

flow over a wide range of Reynolds numbers. It is capable of handling abrupt eruptions 

of the boundary layers associated with unsteady flows at high Reynolds numbers. These 

kind of flows typically need to be handled when dealing with moving boundary flows. 

Interplay of primary and secondary vortices are easily and efficiently handled by the 

algorithm as the mesh is seen to adapt according to the requirements of the solution.  

4.1.4 Solidification 

This problem involves phase change at the solid-liquid interface, controlled by 

diffusive transport, interfacial curvature and growth and instability of the interface. In this 

case, validation and optimization of the local refinement procedures can be performed by 

comparing the computed solution against theory. Microscopic solvability is the currently 

accepted theory for the growth of dendritic structures in solidification from the melt [135, 

141]. For solidification from pure melts, the basic features of the theory are as follows. 

The Mullins-Sekerka instability [103] of a planar solidification front occurs in the case 

when the melt is under-cooled, i.e., the temperature of the melt ∞T  is depressed below the 

melting temperature of the planar front mT . Linear stability analysis of phase fronts under 

such conditions predicts a continuum of solutions in the form of paraboloidal needle 

crystals, which were obtained by Ivantsov [72] as  
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 )()exp( PeerfcPePeπ=Δ  (4.1) 

where Δ  is the dimensionless under-cooling [ )//()( pm CLTT ∞−=Δ ]. L  is the latent 

heat and pC  is the specific heat at constant pressure, Pe is the tip Peclet number given by 

αρ 2/tiptipVPe =  where tiptip V,ρ  are the radius and velocity of the paraboloidal dendrite 

tip and α  is the thermal diffusivity. However, in nature, one observes unique crystal 

patterns that are selected by the growth conditions and material properties. The selection 

of a pattern from the continuum of unstable wavelengths becomes possible by 

introduction of surface tension, which provides a smoothing or restabilization mechanism 

and picks out a spectrum of solutions. The influence of the surface tension appears 

through the modulation of the interfacial temperature for solidification fronts with 

curvature by means of the Gibbs-Thomson condition (without including interfacial 

kinetics effects): 

 κ
θγ
L

T
TT m

mi
)(

−=  (4.2) 

In the above, κ  is the interfacial curvature and the surface tension )(θγ  is a 

function of the crystalline anisotropy (θ  being the angle made by the normal to the 

interface with the x-axis). The strength and directional dependency of the surface tension 

are determined by the structure of the solid formed. For a typical fourfold symmetric 

crystal (such as the popular transparent organic model material succinonitrile [70, 71], 

this function could assume the form [79, 111]. 

 )4cos151()( 0 θεγθγ −=  (4.3) 
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A unique operating point of the dendritic tip is then selected from the set of 

allowed solutions by crystalline anisotropy through the solvability mechanism [77] by 

stipulating that a material-dependent selection parameter ∗σ  be related to the tip radius 

and velocity as follows: 

 2
0

0 L

CT
d pmγ

=  (4.4) 

The selection parameter ∗σ  is a function of the crystalline anisotropy ε  and is 

typically of the form: 

 4/7
0εσσ =∗  (4.5) 

The unique geometric features that are displayed by growing dendrites when a 

steady tip propagation state has been reached are the tip radius ( tipρ ) and velocity ( tipV ), 

as shown in Figure 4.12. Equations (4.1-4.4) above provide the necessary relations for 

obtaining these two unknown selected parameters in terms of the control parameters, 

namely, the under-cooling Δ , capillarity parameter 0d , and anisotropy strength ε . 

Details of model implementation and discretization to include interfacial 

boundary conditions are presented in [158]. The calculations for benchmarking the solver 

are reproduced here with local mesh refinement. The current calculation corresponds to 

an under-cooling 55.0=Δ , capillarity parameter 5.00 =d  and anisotropy strength of 

03.00 =ε . The analytical values of non-dimensional steady state tip velocity tipV  is 

0.0111 and tip radius tipρ =23.3  [135]. Figure 4.11 shows the growth of the dendrites and 

corresponding fine meshes. Figure 4.11 (a) shows the mesh used in the simulation of 
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dendrite growth for comparison with the microscopic solvability theory. As seen in the 

figure the overall size of the domain is 4x4 with 2x2 portion covered by a uniform mesh. 

In the remaining part, a stretched mesh with about 50 points in each direction is used. The 

seed is a quarter circle of radius 0.05 placed at the origin, growing a quarter of the 

dendritic crystal. The bottom and left faces are symmetric while the top and right faces 

have a fixed temperature of -0.55. The characteristic variable that controls the refinement 

is 0.55 based on the boundary temperature.  

As the simulation proceeds, fine meshes are built around the interface based on 

thermal gradients. Figure 4.11 (b) shows that the method also captures the growth of the 

dendritic side branches. Figure 4.12 shows the comparison of calculated tip velocity, tip 

radius and tip selection parameter with analytical solution of the microscopic solvability 

theory. The results presented are for a base mesh size of 0.026 with four levels of 

refinement. Table 4.7, Table 4.8 and Table 4.9 show the results on the dendrite growth 

simulation and comparison with microscopic solvability theory. Table 4.7 shows the 

results of grid refinement study. A fine mesh resolution of refxΔ =0.0033 is found to be 

adequate to bring the error in tip velocity within 5% and tip radius to within 1% for a 5 

time speed-up over uniform fine mesh solution. Table 4.8 shows studies to optimize base 

mesh cell size. The error in tip radius and tip velocity is around 5% till 5 levels of 

refinement and comparable to the fine uniform mesh solution.  However, it was found 

necessary to limit the tolerance limit to 1% in these calculations because of the relatively 

thick boundary layer. When compared with the previous flow calculations, this 

calculation is diffusion driven while the flow calculations were convection controlled 

with a thinner boundary layer. Hence, the difference in the required tolerance limit to 
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ensure less than 5% error in solution. Increasing the refinement tolerance to 5% for 5 

levels of refinement increases the error in tip radius and tip velocity to more than 5%. 

The difference between this simulation and the previous flow simulations is that this is 

diffusion dominated unlike the previous cases which were advection dominated. From 

Table 4.9, a tolerance of 10% is found to be sufficient to achieve less than 5% error in 

solution.  

4.2 Other Applications 

Based on the insights obtained from the benchmark calculations discussed in the 

previous section, the algorithm is demonstrated on a variety of applications involving 

moving boundaries. All the applications demonstrated below involve steep flow gradients 

or constricted geometries. In each case, resolution of the finest features requires use of 

very fine meshes making these calculations computationally very slow and inefficient in 

the absence of local refinement schemes.  

4.2.1 Simulation of Mixing in the GI Tract 

The pylorus (meaning ‘gatekeeper’) is a star shaped valve like structure at the 

junction of the stomach and duodenum. This organ is a critical part of the digestive 

system with many functions. The Pylorus is controlled by a complex sphincter muscle 

that sets the resistance to the bulk fluid flow out of the stomach (by affecting the resting 

diameter or tone of the open/relaxed outlet), and closes the outlet intermittently, by a 

forceful contraction of the pyloric segment that occurs as the peristaltic contraction of the 

stomach invades the terminal antrum. In man, when fully relaxed, the pyloric orifice 

forms a narrow waist between the much wider duodenal bulb and the antrum (luminal 
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diameter about 1 cm, length less than 0.5 cm). Closure of the lumen is completed by 

mucosal folds, which narrow the lumen into a star-like slit, then plug it. If the pylorus 

malfunctions, the stomach discharges larger particles into the intestines. Discharge of 

larger particles by the stomach in turn leads to failure of digestion and absorption in the 

intestines.  Pylorus and duodenal bulb are the high ridge over which fluids swap out of 

the stomach into the depending part of the duodenum. A second function is that the 

pylorus prevents bile reflux into the stomach.  

 In the present study, the mechanics of flow through the pylorus and its effect on 

mixing for the homogenization and the effective exposure of gastric chyme to pancreatic 

and biliary secretions is examined. The current simulations model the pylorus as a notch 

like structure in 2D. The notch functions like a valve opening and closing synchronous 

with pulsating inlet of fluid. A typical Reynolds number calculated from data obtained for 

the cat-gut is around 100. Resolving the fine boundary layers and vortex interaction 

requires very fine meshes. The local mesh refinement scheme speeds up the calculation 

significantly by optimizing usage of meshes for the calculation.  

The action of vortices generated at the pylorus is responsible for the complex 

fluid dynamics that aids in rapid mixing of chyme. A marker fluid is placed upstream of 

the pylorus and advected with the flow by solving the scalar transport equation with low 

diffusion coefficient. A  4th order ENO scheme discussed in Section 3.10 is adopted along 

with the local refinement scheme for discretizing the advection terms in the scalar 

transport equation.  Figure 4.13 shows vorticity contours and the mixing of the marker 

dye with the flow at different time instances. Note that the flow is entirely laminar, but 

within a distance of a few centimeters of the pylorus the marker fluid is fully mixed. 
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Panels (c), (d) and (e) of Figure 4.13 show the complex vortex structures and vortex 

break-up into small structures captured by the calculation as the flow progresses.  

The main reason for the intense mixing in this region is the break up of the jet 

emerging from the pylorus notch due to interaction with the boundary layer from the wall 

and its subsequent break-up into smaller structures. The jet emerging from the pylorus 

hits the top wall and is reflected back into the duodenal bulb. Interaction with the wall 

boundary layer cause break up into small structures while also turning the jet and causing 

it to impinge against the bottom wall with further break-up. Small vortex structures cause 

the intense mixing as seen from the evolution of the marker fluid. The main reason for 

the complex flow dynamics in this region is the asymmetry of the flow emerging from 

the pylorus notch. The small dimension of the closed pylorus causes a strong jet to 

emerge from the notch. The jet is directed upwards because of the asymmetry of the 

notch geometry. The upwardly directed jet then hits the top wall and draws in the 

boundary layer from the top wall. Asymmetry is thus seen to be a major factor that aids in 

mixing and this insight may also have significance in the design of engineering systems. 

Figure 4.14 shows instantaneous vorticity contours and corresponding refined mesh for a 

well resolved and optimized calculation. 

4.2.2  Particles Settling Under the Effect of Gravity 

The efficacy of the local refinement scheme is demonstrated in an application 

involving multiple moving immersed objects of varying dimensions. 20 cylinders with a 

median radius of 0.4 and median object to fluid density ratio of 1000 are placed in a 

domain of size 10x50. The cylinders are allowed to fall freely under the effect of gravity 

and pressure and shear forces acting on them. Initially the fluid is stationary. Once the 
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cylinders are released and allowed to fall, flow is induced by the effect of the falling 

cylinders. As the flow develops, gravitational force as well as fluid forces govern the 

movement of the particles. Reynolds number is varied as Re =10, 100 and 1000 by 

altering the fluid viscosity suitably. The cylinder length scale is about 1/100th of the 

domain size. To capture the fine flow features, especially at higher Re , the small length 

scales need to be adequately resolved.  Use of stretched meshes is not practical for this 

case, because the cylinders pass through the entire domain at some point in the simulation 

and stretched meshes can cause fine length scales to be diffused because of numerical 

diffusion. Without the LMR scheme, this is a very heavy calculation requiring cells of the 

order of million cells allowing about 20 cells across the cylinder diameter. With the LMR 

scheme, refining to a maximum of 5 levels of refinement and coarsening the base mesh 

accordingly the average number of cells required for the calculation is reduced by 3 

orders of magnitude with corresponding speed-up of the unsteady calculation. Most of 

the critical region as far as the flow is concerned is restricted to the region around the 

cylinder and this region is automatically detected by the refinement criterion. The area 

where there are no large gradients is coarsened.     

Figure 4.15 shows three stages in the calculation for the three Reynolds numbers. 

As seen in the figure, the calculation at Re =10 is characterized by thick boundary layers 

and high drag. The higher drag causes the larger cylinders to slow down as they descend 

in the fluid, causing the cylinders to cluster and collide against each other. Elastic 

collisions are assumed between the cylinders and in the event of collision of cylinder 1 

with cylinder 2, the velocities of the two objects are modified based on elastic collision 

theory as:  
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where, 21, mm  are the masses and 21,VV  are the velocities of the two colliding objects 

respectively. newV ,1  is the velocity of object 1 after the collision.  

The simulation with Re =100 shows longer wakes behind the cylinders and 

beginning asymmetry in the wake. No distinct shedding of Karman vortices is observed 

at this Reynolds number. The third case with Re =1000 shows intense shedding of 

Karman vortices. The high Reynolds number is characterized by thin boundary layers and 

periodic shedding of vortices. At Re=1000, the particles get caught up in the wake of the 

particles in front and the shedding vortices are clearly captured in the current scheme. 

Figure 4.16 shows the vorticity contours and the refined mesh at a particular time instant 

in the simulation. As seen, the LMR scheme captures the intricacies of the boundary and 

shear layers at different scales with great detail in a highly optimized and accurate 

calculation.  

4.3 Conclusions and Discussions 

A local mesh refinement scheme is implemented complementing the Eulerian 

Levelset based Sharp Interface Method for fast and efficient simulations of moving 

boundary problems. The mesh is adapted based on solution gradient and curvature and 

naturally captures shocks and boundary layers. No user intervention is necessary at any 

point in the calculation except in determining the initial parameters that control the 

refinement process. The method is applied to a variety of benchmark problems involving 
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moving and stationary boundaries and its accuracy and efficiency are demonstrated. The 

parameters that control the refinement process are optimized to obtain maximum speed-

up while maintaining less than 5% error in the solution. Depending on the application, 5-

100 times speed-up is recorded compared to uniform fine mesh calculations.  

For some applications such as the mechanical heart valve simulations, local mesh 

refinement algorithm is essential to obtain reasonable results in real time. Particularly, the 

simulations require highly resolved meshes in some localized regions of the domain. The 

efficacy of the current method in these simulations is demonstrated in the following 

chapters.  
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Fine Mesh 
Cell Size, 

refxΔ  

Maximum 
number of 
allowed 
refinement 
levels ( refn ) 

Number of 
computational 
cells/ Number 
of cell in 
uniform fine 
mesh. 

Relative 
CPU Time 
(Speed-Up) 

% of Time 
Required for 
Refinement 
Operations 

Error 
Compared 
to Uniform 
Fine Mesh 
Solution 

0.16 1 0.00157 5961.6 0.34 5.53e-3 
0.08 2 0.00627 1471.9 3.8 4.60e-3 
0.04 3 0.023 357.45 4.6 2.43e-3 
0.02 4 0.06 83.53 5.5 8.29e-4 
0.01 5 0.15 16.29 7.6 3.07e-4 
0.005 6 0.4186 4.14 17.37 3.01e-4 

 

Table 4.1. Optimizing finest mesh size for Lid Driven Cavity Flow at Re=1000. 
Optimized refined mesh size for maximum speed-up for less than 5% error is found to be 

refxΔ =0.005. 
 
Note: CPU time is compared with a uniform fine mesh ( refxΔ =0.005) calculation. Base 
mesh size, basexΔ  = 0.16 and tolerance limitσ  = 5% are held fixed while maximum 
number of allowed refinement levels refn  is varied.  
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Base Mesh 
Cell Size, 

basexΔ  

Maximum 
number of 
allowed 
refinement 
levels ( refn ) 

Number of 
computational 
cells/ Number 
of cell in 
uniform fine 
mesh. 

Relative 
CPU Time 
(Speed-Up) 

% of Time 
Required for 
Refinement 
Operations 

Error 
Compared 
to Uniform 
Fine Mesh 
Solution 

0.005 1 1.0 1.0 0.0 0.0 
0.01 2 0.3229 2.52 1.59 3.61e-5 
0.02 3 0.1735 7.10 2.57 1.22e-4 
0.04 4 0.1720 8.32 4.33 2.45e-4 
0.08 5 0.2488 7.19 7.53 2.96e-4 
0.16 6 0.4186 4.14 17.37 3.01e-4  

Table 4.2. Optimizing base mesh size for Lid Driven Cavity Flow at Re=1000. 
refxΔ =0.005, σ  = 5% are held fixed and basexΔ  and refn  are varied. Optimized base 

mesh size is found to be basexΔ =0.04.  
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Specified 
tolerance limit, 
σ   

Number of 
computational 
cells/ Number 
of cell in 
uniform fine 
mesh. 

Relative CPU 
Time (Speed-
Up) 

% of Time 
Required for 
Refinement 
Operations 

Error 
Compared to 
Uniform Fine 
Mesh Solution 

10% 0.15 10.91 3.28 2.51e-4 
5% 0.17 8.32 4.33 2.45e-4 
1% 0.51 1.02 5.01 2.34e-4 

 

Table 4.3. Optimizing tolerance limit for Lid Driven Cavity Flow at Re=1000. 
basexΔ =0.04, refxΔ =0.005, refn =4 and σ  is varied. From Tables 4.1, 4.2 and 4.3, 

optimized parameters for maximum speed-up for less than 5% error in solution are 
basexΔ =0.04, refxΔ =0.005, refn =4 and σ  = 10%.  
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Fine 
Mesh 
Cell 
Size, 

refxΔ  

Maximum 
number of 
allowed 
refinement 
levels 
( refn ) 

Number of 
computational 
cells/ Number 
of cell in 
uniform fine 
mesh. 

Relative 
CPU 
Time 
(Speed-
Up) 

% of Time 
Required 
for 
Refinement 
Operations 

% Error 
in Drag 
Coefficient 

% Error 
in Length 
of re-
circulation 
zone 

0.64 1 0.0016 6089.7 0.0 49 - 
0.32 2 0.0036 3479.18 3.7 29 - 
0.16 3 0.00815 2551.5 3.9 14 4.3 
0.08 4 0.010 1448.09 4.6 4.3 2.1 
0.04 5 0.019 114.04 4.51 0.14 0.035 
0.02 6 0.028 87.07 5.08 0.14 0.03 

 

Table 4.4. Flow across cylinder, =Re 20. Optimizing finest mesh size. basexΔ  = 0.64, 
σ  = 5% are fixed and refn  is varied.  
 
Note: Drag force of the cylinder and length of the wake are compared with published 
results [96, 160]. The drag force on the cylinder is expected to be between (2.03-2.08) 
while the length of the wake is around 0.93 d , where d is the diameter of the cylinder. 
Note that the cylinder diameter is 1.0 and this fixes the maximum allowed base mesh cell 
size.  
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Base 
Mesh 
Cell 
Size, 

basexΔ  

Maximum 
number of 
allowed 
refinement 
levels 
( refn ) 

Number of 
computational 
cells/ Number 
of cell in 
uniform fine 
mesh. 

Relative 
CPU 
Time 
(Speed-
Up) 

% of Time 
Required 
for 
Refinement 
Operations 

% Error 
in Drag 
Coefficient 

% Error in 
Length of 
recirculation
zone 

0.04 1 1.0 1.0 0 0.096 0.001 
0.08 2 0.25 2.23 1.05 0.096 0.004 
0.16 3 0.067 12.94 1.63 0.14 0.016 
0.32 4 0.022 52.68 2.64 0.14 0.03 
0.64 5 0.019 114.04 4.51 0.14 0.035 

 

Table 4.5. Flow across cylinder, =Re 20. Optimizing base mesh size. refxΔ =0.04, σ  
= 5%,  basexΔ  and refn  varied. The method shows scalable speed-up with increasing base 
mesh size. 
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Specified 
tolerance 
limit, σ   

Number of 
computational 
cells/ Number 
of cell in 
uniform fine 
mesh. 

Relative 
CPU Time 
(Speed-Up) 

% of Time 
Required 
for 
Refinement 
Operations 

% Error in 
Drag 
Coefficient 

% Error in 
Length of 
recirculation
zone 

10% 0.011 165.57 3.95 0.0 1.3 
5% 0.019 114.04 4.51 0.14 0.035 
1% 0.053 45.8 6.71 0.14 0.02 
 

Table 4.6. Optimizing tolerance limit for flow across cylinder with Re=20. 
basexΔ =0.64, refxΔ =0.04, refn =4 and held fixed while σ  is varied. refxΔ =0.04, σ =10% 

are found to be the optimum values for less than 5% error and maximum speed-up for 
this calculation from Tables 4.4, 4.5 and 4.6.  
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Fine 
Mesh Cell 
Size, 

refxΔ  

Maximum 
number of 
allowed 
refinement 
levels ( refn ) 

Relative 
CPU Time 
(Speed-Up) 

% of Time 
Required for 
Refinement 
Operations 

% Error in 
Tip Radius 

% Error in 
Tip Velocity 

0.052 1 680.27 0 51.8 150.9 
0.026 2 100.70 3.03 45.5 103.8 
0.013 3 16.84 3.12 27.3 51.6 
0.00667 4 4.93 3.47 19.1 28.9 
0.0033 5 2.07 4.54 1.8 5.4 

 

Table 4.7. Dendrite growth simulation and comparison with microscopic solvability 
theory [135]. Optimizing finest mesh size, refxΔ . basexΔ  = 0.052, σ  = 1% are held fixed 
and refxΔ  is varied. Optimum mesh size is found to be refxΔ =0.0033. 
  
Note: For the simulation conditions ( 55.0=Δ , 5.00 =d , 03.00 =ε ), tip velocity is 
expected to reach a steady value of 0.011 and tip radius is expected to reach a steady 
value of 23.3. Initial seed diameter of 1.0 fixes the maximum basexΔ .  
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Base Mesh 
Cell Size, 

basexΔ  

Maximum 
number of 
allowed 
refinement 
levels ( refn ) 

Relative 
CPU Time 
(Speed-Up) 

% of Time 
Required for 
Refinement 
Operations 

% Error in 
Tip Radius 

% Error in 
Tip Velocity

0.0033 1 1 0 0.45 3.4 
0.0667 2 2.83 3.2 0.73 4.3 
0.013 3 4.45 3.3 0.91 4.7 
0.026 4 4.93 3.47 1.36 4.9 
0.052 5 5.07 3.5 1.8 5.4 

 

Table 4.8.  Dendrite growth simulation and comparison with microscopic solvability 
theory [135]. Optimizing base mesh size. refxΔ =0.0033, σ  = 1%.  



www.manaraa.com

 

 

 

117

 
Specified 
tolerance limit, 
σ   

Relative CPU 
Time (Speed-
Up) 

% of Time 
Required for 
Refinement 
Operations 

% Error in Tip 
Radius 

% Error in Tip 
Velocity 

10% 3.5 2.5 7.2 8.4 
5% 4.45 2.9 4.5 6.7 
1% 5.07 3.5 1.8 5.4 

 

Table 4.9. Optimizing tolerance limit for Dendrite growth simulation and comparison 
with microscopic solvability theory [135]. basexΔ =0.052, refxΔ =0.0033 are fixed and 
tolerance limit is varied. Optimized parameters from Tables 4.7, 4.8 and 4.9 are found to 
be refxΔ =0.0033, basexΔ  =0.052, σ =5%. 
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(a) (b)

(c) (d)

 

Figure 4.1. Vorticity contours and corresponding refined mesh. (a) Re=1000, vorticity 
contours at steady state. (b) Refined mesh corresponding to (a). (c) Re=10000, vorticity 
contours at steady state. (d) Refined mesh corresponding to (c). 
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(a) 

(b) 

 

Figure 4.2. Lid-driven cavity flow at Re=1000. (a) Comparison of centerline u-
velocity with published results [54] for different based meshes and refinement levels. (b) 
Comparison of centerline v-velocity with published results.  



www.manaraa.com

 

 

 

120

 
 

(a) (b)

(c) 

(d) 

 

Figure 4.3. Flow over cylinder. (a) Steady state vorticity contours for Re=20. (b) 
Refined mesh corresponding to (a). (c) Instantaneous vorticity contours for Re=300. (d) 
Refined mesh corresponding to (c).  
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Figure 4.4. Comparison with validated results. (a) Re=20, (b) Re=300. Drag and lift 
are compared with validated results.  
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(a) 

(b) 

(c) 

(d) 

 

Figure 4.5. Vortex shedding from an impulsively started cylinder for Re=1000. The 
time instances are 0.6,0.5,0.4,0.2=T . These flow patterns are compared with published 
data [82] on the right side.  



www.manaraa.com

 

 

 

123

 

-75

-50

-25

0

25

50

75

0.0 0.5 1.0 1.5 2.0
Angle/PI

B
od

y 
V

or
tic

ity
 a

t T
=5

.0 Current
Koumotsakos et al.

0

0.5

1

1.5

2

0 2 4Time

T
ot

al
 D

ra
g 

   
 .

Current
Koumotsakos et al.

 
 

-75

-50

-25

0

25

50

75

0.0 0.5 1.0 1.5 2.0

Angle/PI

B
od

y 
V

or
tic

ity
   

   
   

.

T=0.4
T=1.0
T=1.4

-75

-50

-25

0

25

50

75

0.0 0.5 1.0 1.5 2.0
Angle/PI

B
od

y 
V

or
tic

ity
   

   
   

.

T=2.0
T=3.0
T=4.0

 

(a) (b)

(c) (d)

 

Figure 4.6. Comparison with Koumoutsakos and Leonard [82]. (a) Body vorticity 
from the current calculation compared with published results for Re=1000 and (b) 
Evolution of drag compared with published results. (c) and (d) Body vorticity at different 
time instances.  
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T=2.0 

T=4.5 

T=6.0 

 

Figure 4.7. Comparison of flow patterns are different time instants with published 
results from [82] for Re=9500. On the right side the flow patterns at corresponding time 
instances from published results are shown  
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Figure 4.8. Vortex shedding at Re=9500. The flow patterns are comparable to 
published results [82]. 
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(a) (b)

(c) (d)

 

Figure 4.9. Impulsively started cylinder at Re=9500. (a) Instantaneous vorticity 
contours, (b) corresponding refined mesh. (c), (d) Zoomed in boundary layer and 
corresponding refined mesh. 
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Figure 4.10. Body vorticity at different time instances for an impulsively started 
cylinder at Re=9500. The plots are shown at the same time instances as shown in [82]. 
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(a)  (b) 

(c)  (d) 

 

Figure 4.11. Phase change problem. (a) Dendrite growth (under-cooling 55.0=Δ , 
capillarity parameter 5.00 =d  and anisotropy strength of 03.00 =ε ) sequence. (b) Mesh 
used for calculation. The refined mesh tracks the interface. (c) Dendrite growth along 
diagonal axis. Note the secondary dendrites. (d) Refined mesh tracks the smaller scale 
features.  
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Figure 4.12. Comparison with microscopic solvability theory [135]. (a) Tip velocity 
and (b) Tip radius and (c) Tip selection parameter. 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Vorticity Scalar

 

Figure 4.13. Effect of the pylorus on mixing in the GI tract. The left panels show 
vorticity contours at different points in the cycle while right side panels show the scalar 
contours indicating mixing. Note that the jet emerging from the closed pylorus notch 
impinges against the upper wall Interacting vortices lead to a large amount of mixing.  
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(a) 

(b) 

 

Figure 4.14. Formation of refined mesh. (a) vorticity contours and corresponding (b) 
refined mesh for the pylorus simulation.  
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Re=10 Re=100 Re=1000 

(a)  T=16.00 

(b)  T=28.50 

(c)  T=41.00 

 

Figure 4.15. Cylinders falling under the effect of gravity. Multiple Levelsets of 
different scales simulated by local mesh refinement. (a), (b) and (c) show instantaneous 
vorticity contours at different points during free fall for the three Reynolds numbers 
calculated.  
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 (a) Vorticity Contours (b) Locally Refined Mesh 

 

Figure 4.16. Instantaneous vorticity contours and corresponding refined mesh for freely 
falling cylinder at Re=1000.  
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CHAPTER 5  

PLATELET ACTIVATION DURING HEART VALVE CLOSURE 

5.1 Introduction 

The method developed in Chapters 2 and 3 is now applied to perform simulations 

of the operation of a mechanical heart valve closure. Implantation of mechanical heart 

valves is one of the most common forms of treatment of valvular diseases. Due to the 

disturbances to the blood flow and non physiological shear stresses produced in the heart 

chambers due to the presence of the rigid mechanical valve, formed elements in the blood 

such as platelets are damaged and cause further complications in the patients. 

Understanding the fluid mechanics of flows through mechanical valves is thus important 

in design improvements. A full FSI simulation of the valve closure by the application of 

pressure in the ventricular chamber is demonstrated here. One significant difficulty in 

modeling the heart valve mechanics is the wide disparity in length scales from the large-

scale motions with length scales in the valve orifice (~25 mm ) to the leakage flow 

through the gap (~0.4 mm ) to the flow in the hinge regions of mechanical valves 

(~100 mμ ). To capture the flow dynamics around the heart valve accurately, the above 

length scales need to be resolved adequately. The leakage flow is a significant part of the 

valve dynamics that can only be adequately resolved for meaningful flow analysis by 

employing state-of-the-art computational techniques.  

Leaflet motion is another important feature that must be properly captured. The 

valve sweeps an angle of almost 64 o  in the process of valve closure. It is well established 

by previous studies [33, 113] that flow patterns recorded from fixed valve models are 
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entirely different from moving valve models. Use of body-fitted meshes may be able to 

adequately resolve the leakage flow by use of highly stretched meshes [15, 28, 33, 52, 53, 

64, 75, 76, 80, 81, 85, 118, 119, 149, 161].  However, use of moving meshes presents 

additional complications of re-meshing, in particular the rather complex task of mesh 

generation to accommodate changes in geometry in order to prevent mesh skewness, 

entanglement, extreme disparity in cell sizes and aspect ratios and so on. All these factors 

impact negatively on the accuracy and robustness of body-fitted mesh schemes. The 

natural way of handling moving boundary problems by entirely obviating the complexity 

of mesh generation is by using a Cartesian grid approach. Cartesian grid methods have 

been previously employed in modeling of heart valve dynamics [108, 109] but ensuring 

sufficient resolution in the small gaps can make the computations extremely tedious 

because of the fine meshes that have to be used. A further consideration is that algorithms 

for solving the Navier–Stokes Equations must employ at least second-order accurate 

numerics both in space and time to capture the complex flow dynamics near the heart 

valve. First-order methods are more stable but introduce excessive artificial viscosity into 

the numerical solutions and tend to smear out most scales of motion, except perhaps the 

largest ones, and could dramatically misrepresent hemodynamically relevant flow 

features—such as the intensity of regions of high shear, the existence of pockets of 

reversed flow and flow separation, etc [163]  

The valve is modeled as a smoothed rectangle hinged close to the left edge. The 

left boundary of the domain is symmetric giving the effect of two leaflets. The right 

boundary is the valve housing and is modeled as a wall. Pressure on the top boundary 

representing the atrium is held fixed while the pressure on the bottom boundary is 
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increased linearly to 120mm Hg over a period of 60 ms, representing the pressure applied 

by the ventricle in a heart beat. Based on maximum velocity recorded in the gap between 

the leaflet and the housing, and considering the gap dimensions and the properties of 

blood, the maximum Reynolds number is calculated to be around 1800. The pressure 

gradient across the valve leaflet induces blood flow, and causes the leaflet to swing shut 

due to the hemodynamic forces acting on the valve.  

5.2 Fluid-Structure Interaction 

The leaflet rotation required as input for solving the Levelset equation as 

discussed in Section 2.2.3 can be described by the relationship [28, 29, 85], 

 
o

I
M

dt
d

=2

2θ  (5.1) 

In the equation, )(tθ  is the opening angle, indicating the leaflet position at any 

instant t ; 
o

I  is the moment of inertia of the leaflet about the pivot (3.3 29 mkge −− ), M  

is the total momentum applied on the leaflet from the external forces inducing the leaflet 

motion. The external momentum can be calculated as: 

 
FPG

MMMM ++=  (5.2) 

G
M  is the momentum resulting from the buoyancy and the gravitational force 

and is given by: 

 ( ) )cos(
2

θρρ ⎟
⎠
⎞

⎜
⎝
⎛ −−= algVM

flG
 (5.3) 
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Here g is the acceleration due to gravity, V  is the leaflet volume, 
l

ρ  (2000 

3/ mkg ) and
f

ρ  (1056 3/ mkg ) are the leaflet and fluid densities respectively, 

l (1.316 cm ) and a are the leaflet radius and pivot length (distance between the hinge 

location and the left-side edge of the valve, 0.179 cm ). The leaflet thickness is 

0.0899 cm . 
P

M  is the momentum resulting from the blood pressure, and 
F

M  is the 

momentum resulting from shear forces. These quantities are calculated from the flow 

field by integrating the normal (pressure) and tangential (shear-stresses) fluid forces 

acting on the valve surface.   

5.3 Leaflet Rebound 

The leaflet will impact against the valve seating lip at the instant of valve closure. 

After impact, the leaflet will bounce back from the housing. The governing equation of 

leaflet dynamics during impact can be expressed as [28]: 

 
12

σωω −=  (5.4) 

where σ  is the coefficient of resilience that depends upon the material of the leaflet and 

the valve housing. 
1

ω  and
2

ω  are the angular velocities before and after impact, 

respectively. The coefficient of resilience σ is specified as 0.5 [28].  

5.4 Platelet Activation 

Exposure to high shear and entrapment in re-circulation regions with high 

residence time in the vicinity of the valve are expected to contribute to platelet deposition 

and thrombus formation [18, 85]. A dynamic platelet activation model that includes the 
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effects of shear stress and exposure time is employed. Statistical observations of 

activation levels of platelets at various stages of valve closure are made throughout the 

period of calculation.  

The primary cause of platelet activation is exposure to high shear stress over a 

sufficiently extended period of time. Therefore, a primary measure for level of platelet 

activation can be defined as [18]:  

 ∫=
T

T
dt

0
τα  (5.5) 

5.5 Simulation Conditions 

The geometry for a typical bi-leaflet valve is shown in Figure 5.1(a). Figure 5.1(b) 

shows the valve leaflet dimensions and Figure 5.1(c) shows the pressure applied on the 

ventricular side. In the fully opened position, the valve is aligned at 0.2 o  with the vertical 

axis. To close completely, it swings through an angle of 63.8 o  with the fully closed 

position being aligned at 64 o  with the vertical axis. Experiments record the closure time 

for this valve to be around 32 ms . The large angle of rotation does not provide any 

challenge to the Eulerian method since the mesh does not have to be modified to account 

for the rotation. However, the challenge lies in adequately resolving the small gaps 

between the two leaflets and the leaflet and the wall. The gap between the two leaflets as 

well as between the leaflet and the wall is specified as 0.03 cm  while the overall width of 

the valve itself is 1.3116 cm .  

The fluid is assumed to be incompressible, laminar, and Newtonian with the 

density of 1056 3/ mkg  and viscosity of 0.0035 11 −− skgm , which is representative of 
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human blood properties at 37 C° . The ventricular pressure at the inlet is raised from 0 to 

120 mmHg  at a constant pressure rise rate of 2000 smmHg /  as described in Figure 

5.1(c) and the atrial pressure at the outlet is maintained at 0 mmHg  consistent with 

physiological conditions. The ventricular and atrial pressures prescribed above are 

sufficient to be used as the boundary conditions at open boundaries. At the symmetry 

boundary, normal velocity component is set to zero and all other quantities are 

extrapolated assuming zero normal gradient. The remaining boundaries are solid walls, 

and the standard no-slip condition is used. Note that the leaflet rotation is calculated from 

the fluid forces acting on it. Platelets are assumed to be point spheres of radius 2 mμ  and 

density same as that of blood. 

5.6 Results 

The nominal local Reynolds number based on properties of blood is calculated to 

be around 1800 based on the gap dimensions and the maximum velocity computed in the 

gap after closure. The above Reynolds number indicates that the flow through the valve is 

expected to be laminar for the bulk of the flow. However, the disparate length scales (i.e. 

between the overall valve dimensions and the leakage region) pose a challenge in 

adequately meshing the leakage gap (~15 cells at least are required to resolve the jet 

flows in these gaps) to obtain reliable solutions in reasonable time making optimal use of 

computational resources. The local mesh refinement algorithm solves this problem and 

refines meshes only in regions that need to resolve high solution gradients or curvature.   

Figure 5.2(a) shows the mesh being locally refined in regions where the algorithm 

for adaptive refinement detects high velocity gradients and gradients of vorticity. The left 
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panel in the figure shows the refined mesh and the right panel shows the vorticity 

contours. The maximum allowed refinement level for a fixed base mesh is estimated from 

a grid refinement study tracking the closure dynamics. Figure 5.2(b) shows the closure 

angle recorded with time for 3,4,5 and 6 maximum levels of refinement allowed in the 

calculation. A pilot study with 3 levels of refinement was seen to be unstable beyond a 

certain point of valve closure, presumably because the mesh was too coarse for adequate 

resolution of the large gradients present in the boundary and shear layers in the gap 

region. As seen in the figure, refinement of the base mesh up to 5 levels of refinement 

shows converged solution of closure dynamics and is adopted in the present calculation.      

5.6.1 Closure Phase 

In the fully open position, the valve leaflet is aligned at an angle of 0.2 o  with the 

vertical axis. Initial closure of the valve is very slow as the open valve does not present 

much obstruction to flow. In this position, the forces acting on the valve are relatively 

low because its orientation is in the direction of flow. As the valve swings shut pressure 

buildup on the upstream (ventricular) side causes the net force acting on the valve to 

increase, thus increasing the angular velocity of the valve. The net effect is that the leaflet 

motion is very small for a considerable time after the ventricular pressure rise is initiated; 

in the final 25 %  of the time there is exponential increase of angular velocity and 

corresponding rapid closure of the valve. Figure 5.3(a) compares the experimentally 

measured closure behavior with that of the current calculation. Closure time measured 

from the current calculation is about 30.6 ms  while the experimental curve shows about 

32 ms . The discrepancy could be because the computational model is restricted to 2D 



www.manaraa.com

 

 

 

141

and does not incorporate the effect of 3D flow from which experimental data was 

obtained. Figure 5.3(b) shows the corresponding applied pressure on the ventricular side. 

(The points marked on Figure 5.3(b-c) correspond to the time instants at which the 

contour plots are presented in Figure 5.4(a-f).  Figure 5.3(c) shows the angle through 

which the valve has moved over time while Figure 5.3(d) shows the angular velocity. 

Once the valve hits the housing it rebounds with a resilience factor of 0.5 characterized 

by the reversal of the angular velocity (Figure 5.3(d)) and re-opening of the valve.  In the 

following results, the valve leaflet edge at the centerline will be referred to as the “left 

edge” and that on the housing side will be termed the “right edge”. Note that these terms 

apply specifically to the present case of two-dimensional simulations with a symmetry 

line at the left boundary. 

Figure 5.4 shows vorticity contours at various stages of leaflet closure. In Figure 

5.4(a), the valve is almost fully open.  Even at this stage, boundary layer separation is 

evident at the left and right edge of the leaflet. The next stage in Figure 5.4(b) shows the 

wake starting to oscillate as it becomes unstable. In the third stage in Figure 5.4(c) the 

unstable wake rolls up into vortices which shed periodically from the leaflet at the left 

edge. At this point in time the gap between the two leaflets at the left side (i.e. the 

centerline) is the smaller one and the flow velocity is higher there, causing vortex 

shedding from the left edge of the leaflet.  This periodic shedding of vortices occurs at 

the left edge throughout the valve closure process but this appears to have little 

consequence for platelet activation or thrombus formation as discussed later.  

The dynamics at the right edge of the leaflet are more interesting and 

consequential for platelet activation and localization. As seen in Figure 5.4(a-c) the 
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boundary layer on the right edge of the leaflet starts thickening and separating from the 

edge. A weak vortex with recirculating flow is observed on the distal side of the leaflet at 

the right edge as well. The boundary layer on the (Figure 5.4 (d)) wall is clearly 

distinguishable at this stage. As the valve closes further, the anti-clockwise vortex on the 

right edge of the leaflet starts thickening and separating. But, this boundary layer never 

appears to roll up and shed as it does on the left edge of the leaflet throughout the closure 

phase. This is because the right edge of the leaflet has a significant velocity in the same 

direction as the flow due to leaflet rotation around the hinge. Also, as long as the gap 

between the right edge and the housing is large the predominant flow velocities at this 

stage of valve closure lie at the centerline of the valve; this leads to higher shear rates and 

hence enhanced shear layer instability and roll-up at the left edge of the leaflet.  The 

leaflet rotation has the effect of pushing the fluid distal to the valve towards the central 

axis such that the jet flow from the gap between the leaflet and the valve is pushed 

towards the central axis. In addition, the leakage jet and shear layer emerge into a region 

of increased flow area, leading to a further deviation of the jet into the space distal to the 

valve. Because of the orientation of the leakage jet, the wall boundary layer on the valve 

housing thickens and separates. In Figure 5.4 (f) which is very close to the closure point, 

the positive vorticity from the valve edge and the negative vorticity from the wall 

approach each other closely. If held in this position for a longer time, there is the 

possibility of interaction between the boundary layers as shown in the stages after 

closure. To summarize, the closure stages are characterized by boundary layer separation 

from the right edge of the leaflet, instability and roll up of the wake, thickening of 

boundary layers on the right edge of the leaflet and the valve housing, and drawing in of 
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the housing wall boundary layer by the vortex emanating from the leaflet’s right edge.  

The interaction of the shear layer at the right edge of the wall with the boundary layer on 

the valve housing has been well resolved in the current calculations using the locally 

refined mesh in this region. This interaction proves to have significant impact on the 

platelet activation as described in the results below. 

The vortex roll-up from the valve edges has been reported by several previous 

computational and experimental studies [16-18, 95, 113] and has been implicated as one 

the main reasons for platelet activation, thrombo-emboli formation and cavitation effects 

that are detrimental to the valve performance. The small gaps between the valve leaflets 

and between the right edge of the leaflet and the wall after valve closure are regions of 

high speed jet flow. Figure 5.5 shows the flow characteristics in this region at valve 

closure. Figure 5.5 (a) shows the vorticity contours at the closure instant. Pressure 

contours in Figure 5.5 (b) shows the pressure build-up on the upstream (ventricular) 

portion of the gap.  Figure 5.5 (c) and (d) show the horizontal and vertical velocity 

contours. The peak velocity at this instant is around 20m/s. As seen in Figure 5.5 (e) 

which shows the stream lines, the jet between the valve leaflets, i.e. on the symmetry 

axis, is oriented in vertical direction with periodic shedding of vortices while the jet 

between the housing wall and the leaflet (on the right edge) is oriented towards the 

central orifice. The orientation of this jet is caused by a combination of factors, including 

the swinging movement of the valve during closure phase which pushes the fluid towards 

the central axis and the sudden area expansion experienced by the leakage flow. 

Additionally, the central jet is stronger for most of the closure stage because of the 

smaller orifice area and this jet draws in most of the fluid towards it. The orientation of 
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the leakage jet towards the central orifice  is critical because as seen in Figure 5.5 it has a 

significant “pulling” effect on the boundary layer on the housing wall, causing it to 

thicken and separate. These two oppositely oriented vorticity layers on the right edge of 

the valve are critical in the behavior of the jet in the post-closure stage. The jet 

orientation will not be captured in its entirety unless the swinging action of the valve is 

simulated. Therefore, as noted by previous researchers, flow characteristics will be 

entirely different for a moving valve in comparison to a fixed valve [33, 113].   

Figure 5.6(a) and (b) show the velocity and shear stress magnitude in the small 

gaps through the valve closure and rebound stages respectively. As seen, the peak 

velocity in the gaps until the valve rebounds is around 20 sm /  in agreement with results 

from previous computational work by the present group and others [28, 29, 85]. 

However, at the first valve rebound, velocity magnitudes of 120 sm / were computed at 

the leaflet tip. During this period of rebound the energy which was previously responsible 

for valve rotation is now diverted into pushing the fluid through the small gap. With the 

high velocities built up the flow results in very large shear stresses in the gap flow during 

this period. As seen in Figure 5.6 (b), absolute shear stress reaches high values at this 

instant, much higher than the shear levels required for platelets to become activated. 

After the instant of rebound, the velocity normalizes to around 20 sm /  again. Due to the 

high resolution of the mesh enabled by the local mesh refinement,  intricate flow features 

are captured adequately in spite of high velocity magnitudes.   

5.6.2 Effect of Flow During Closure and Rebound Phases 

Figure 5.7 shows vorticity contours, absolute shear stress and the simulated 

platelet activation in the region of the gap between the leaflet and the housing at time 
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instants near the valve closure and rebound phases. The most significant feature observed 

in the figure is the interaction between the boundary layers separating from the wall and 

the leaflet edge. As seen in Figure 5.7 (I-a), the boundary layers from the wall and the 

leaflet edge separate and come closer.  Due to the mutual interaction of these vortex 

sheets of opposite sign, secondary vortex layers are formed below the main vortex 

structures, both on the wall and on the valve. Instability of these vortex sheets causes the 

sheets to roll up, thus leading to a self-sustaining regeneration of pockets of vorticity that 

lead to local recirculating flows in the region distal to the valve. However, the interaction 

of the vortices in this region does not allow vortices to shed periodically and to be carried 

away downstream as in the central jet on the left edge of the valve. Figure 5.7 and Figure 

5.8 show the various stages of vortex interaction in the valve closure and rebound stages 

with the corresponding instantaneous shear stress and activation parameter. Again, in 

terms of energy budget, the pressure differential across the valve at this time results in the 

creation of recirculating fluid pockets rather than a strong jet with a vertically directed 

velocity field.  The leaflet edge separated boundary layer vorticity draws in the vorticity 

from the housing wall and the two structures roll around each other. As the flow evolves, 

these pockets of vorticity break up but remain in the same region. The dynamics of flow 

in this region causes shear stresses to be high and also causes recirculations that are 

localized in the region near the gap distal to the valve. This high shear coupled with high 

residence time makes this a potential site for platelet activation and deposition. 

Corresponding contours of the activation parameter indicate the distal (atrial) side of the 

right edge of the leaflet  as a high risk region for platelet activation and deposition. This 

is because particles entrained in the vortex interaction zone are subject to high shears 
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from the circulating flow, but are unable to escape quickly from the region. It may be 

noted that if the interaction between vorticity generated at the housing wall and valve 

edge does not occur, the particles are likely to get activated by the high shear region in 

the small gap but may rapidly advect  out of the housing region with the leakage jet and 

would then be unlikely to cause significant deposition. The resolution of the flow in the 

gap is therefore of crucial importance. Elucidation of the flow in this region is possible 

due to the high local resolution provided by the present numerical technique and has not 

been demonstrated previously. Eventually the strong vortex structures with high shear 

rates are carried downstream by the flow, away from the valve leaflet. However, weak 

vortex structures with re-circulating flow on the downstream edge of the leaflet persist 

even after 5-10 ms after valve closure. Figure 5.7 and Figure 5.8 shows the flow 

characteristics and corresponding shear rates and activation parameter a few milliseconds 

after the initial impact of the valve against the housing. At this stage, though the high 

shear region has moved downstream with the vortex structure, the downstream edge of 

the valve continues to show significant activation levels of platelets.  

Figure 5.9 shows a statistical quantification of the maximum shear stress that 

platelets have been exposed to at various stages of valve closure. The maximum shear 

stress that the platelets are exposed to is plotted on the x-axis and the y-axis shows the 

percentage of platelets that were seeded in the domain that became exposed to that shear 

stress at different points of valve closure and rebound. The different curves indicate the 

position of the valve. As seen in the Figure, in the final 10 o of valve closure there is a 

sudden increase in the shear stresses that platelets are exposed to and also in the 

percentage of platelets exposed to that shear stress. One explanation for this is the 
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exponential increase in the angular velocity of the valve in the last stages of closure. In 

the last 10 o  of closure, there is also a significant percentage of platelet exposed to shear 

stresses of 500 Pa  and higher. After the rebound stage, there is a small percentage of 

platelets that have been exposed to over 1000 Pa .    

The periodically shedding vortices in the central orifice are likely regions of free 

emboli formation as reported by other researchers [16, 17] but are not likely to cause 

deposition on the valve itself. But interaction of vorticity from the housing wall and valve 

develops a potential thrombogenic region on the valve leaflet edge and housing. The high 

vorticity strength in the recirculating flow region also has significance as potential sites 

for cavitation because of highly negative pressures that develop at the vortex core [8, 29, 

85].  

5.7 Discussion and Conclusions 

The present highly resolved calculations on a fixed Cartesian mesh show flow 

details in the leakage flow that have been hitherto unobserved in numerical simulations. 

To capture the details of the local fluid dynamics during valve function, it is essential to 

adequately resolve macro-scale and micro-scale dynamics simultaneously. Highly 

resolved 2D calculations of flow valve closure dynamics as presented in this work allows 

focus on the leakage flow between the valve leaflet and the housing. Platelet dynamics is 

tracked through the flow by a Lagrangian particle tracking method. A preliminary shear 

stress based platelet activation model is included to predict likely regions of platelet 

activation and thrombus formation and an attempt has been made to explain the 

vulnerability of valve housing to thrombus formation.  
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The interaction between separated boundary layers from the valve housing and 

the valve leaflet is mainly responsible for complex flow system observed just 

downstream of the gap between the wall and the valve leaflet in the near-closure and 

rebound stage. The flow in this region is highly dynamic with high stresses due to vortex 

stretching, breakup and roll-up. Platelets caught in this system are trapped and stay in the 

vicinity of the valve leaflet and housing till the vortices are diffused or advected away 

from the region. High shear stresses and high residence time in this region make this 

region highly vulnerable to thrombus formation. The high strength vortices also make 

this a potential region for cavitation [8]. The gap between the two leaflets on the other 

hand shows periodic vortex shedding. Though platelets passing through this gap are 

likely to experience high stresses and aggregate forming thromboemboli [16], thrombus 

deposition is unlikely in this region. The difference in behavior of the two gaps is partly 

due to the orientation of the leaflet and the intense movement in the flow direction 

experienced by the right edge of the leaflet and the relatively mild movement by the left 

edge of the leaflet opposing the flow direction. On the right edge of the leaflet, the flow is 

oriented towards the central axis of the valve and is responsible for drawing in the 

housing wall boundary layer and causing it to separate from the wall.  The resulting 

interaction of the oppositely signed vortex sheets leads to creation of intense, yet 

localized pockets of vorticity with high residence times in the region distal to the valve 

near the leakage gap. The combination of high shear stress and locally recirculating flows 

can have rich significance for platelet activation and deposition. 
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Figure 5.1. Schematic of numerical model. (a) Full view of domain with dimensions 
and valve in fully closed and open positions. Also indicated are the applied boundary 
conditions. (b) Zoomed view of the area marked in (a) with typical valve dimensions. (c) 
Profile of the time varying pressure applied at the ventricular side. 

 
 
 
 



www.manaraa.com

 

 

 

150

 
 (a) (b)

 

Figure 5.2. Deciding on an optimum mesh. (a) Locally refined Cartesian mesh. Note 
that the mesh is refined in areas of high velocity gradients. Mesh refinement enables 
optimum resolution of boundary layers and shear layers.  (b) Grid refinement study 
deciding maximum number of refinement levels allowed for optimizing computation time 
and accuracy. 
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 (a) (b) 

(c) (d) 

 

Figure 5.3. Quantitative analysis. (a) Comparison of valve closure stages from 
calculation with experimentally measured values. (b) Applied pressure profile on the 
ventricular side. (c) Angle made by valve with vertical axis. (d) Angular velocity of the 
valve as the valve swings shut. The points marked in (b)-(d) are the stages of valve 
closure at which vorticity contours are plotted in Figure 5.4. 
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(a) (c)(b)

(d) (e) (f) 

 

Figure 5.4. Snapshots of closing phase of leaflet showing vorticity contours. 
Maximum and minimum vorticity strengths are indicated as well. (a) 

smst /1028.0,4.0,01.15 020 ×=== ωθ .Valve is almost in open position. 

(b) smst /1014.0,2.3,05.25 040 ×=== ωθ . (c) st /1015.0,7.25,07.29 050 ×=== ωθ . 
The unstable shear layer breaks up and rolls up into periodically shed vortices. 
(d) st /1023.0,2.39,81.29 050 ×=== ωθ . Vortices are shed periodically from the 

downstream edge of the valve. (e) st /1032.0,3.55,4.30 050 ×=== ωθ . Vorticity layer 
at the wall is pulled in by the oppositely oriented vorticity at the leaflet edge. 
(f) st /1015.0,1.61,6.30 050 ×=== ωθ .  
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(b)(a) (c)

(d) (e)

 

Figure 5.5. Flow characteristics at valve closure. (a) Vorticity contours. On the right 
side of the leaflet, shear layer separation is observed both from the leaflet and from the 
wall. (b) Corresponding pressure contours. Once the valve is closed, pressure in the 
ventricle is mostly uniform. The leakage flow is very strong and here there is enormous 
pressure gradient across the valve at both the gaps. (c) and (d) show the horizontal and 
vertical velocities respectively. Maximum velocity is of the order of 20 m/s. (e) Stream 
lines show the direction of flow. A large recirculation region is formed downstream of 
the valve. 
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 (a) (b) 

 

Figure 5.6. Flow parameters recorded in the gap. (a) Velocity and (b) absolute shear 
stress in the gap between the valve leaflets and the gap between the leaflet and the valve 
as the valve swings shut. 
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(a) 

(b) 

(c) 

 

Figure 5.7. Vorticity, shear stress and activation at closure and rebound stage.  The 
first panel in each Figure shows vorticity, the second shows absolute shear stress and the 
third shows the activation parameter. (a)  027.63,71.30 == θt , (b) 054.62,78.30 == θt , 
(c)  095.61,86.30 == θt . 
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(a) 

(b) 

(c) 

 

Figure 5.8. Vorticity, shear stress and activation at closure and rebound stage.  The 
first panel in each Figure shows vorticity, the second shows absolute shear stress and the 
third shows the activation parameter. (a) 037.61,95.30 == θt , (b) 08.60,05.31 == θt , 
(c) 069.54,2.35 == θt . This position is 5 milliseconds after the first impact of the valve 
with the housing. The strong vortices are advected away from the leaflet and diffused 
over time.  
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Figure 5.9. Percentage of platelets exposed to the range of shear stress indicated on 
the x-axis 
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CHAPTER 6  

EFFECT OF LOCAL GEOMETRY ON VALVE PERFORMANCE 

6.1 Introduction 

Despite years of research, problems associated with heart valve prostheses have 

not been eliminated and new designs continue to be developed. It has been observed that 

some models of valves perform better than others with respect to thrombus formation due 

to small changes in geometry and operation parameters. Differences in geometry include 

the shape of the edges of the leaflets, the hinge location, thickness and length of the 

leaflets and orientation of the leaflets in open and closed positions. Operation parameters 

can cause the valve closure velocity and impact velocity to be different for different 

valves and this may have major effect on the performance of the valves. The methods 

developed in Chapters 2 and 3 are applied to comparison of the performance between two 

models of the bi-leaflet mechanical valve.  

Flow velocity and shear stress fields can be significantly different for various 

prosthetic heart valve designs. Elevated levels of shear stress lead to lethal damage to 

blood cells as well as platelet activation. Platelets have been shown to be activated when 

subjected to shear stresses of about 10 Pa  [67] and this will also be further affected by 

presence of foreign surfaces of the valve housing and leaflets. This critical stress level is 

also affected by the residence time of the cell in the damaging fluid environment, which 

further complicates the damage mechanism [16-18, 163, 164].   Furthermore, the regions 

of flow stagnation and flow separation that occur adjacent to the valves could promote 

the deposition of damaged blood elements, leading to thrombus formation on the 
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prosthesis.  

In bi-leaflet valves, thrombus formation is mostly observed in the hinge region 

and also on the valve housing [45-47, 66]. It is hypothesized that the local flow 

conditions in these regions contribute to the thrombus formation. Local flow conditions 

can be influenced by local geometry and performance parameters of the valve. All the 

studies on bi-leaflet valves,  experimental as well as computational, report  flow 

separation and vortex shedding at both ends of the valve leaflets [17, 95].  The high 

velocity leakage flow generates regions of high shear stress which are likely sites for 

platelet activation. The activated platelets have high residence times in the valve vicinity, 

when caught in regions of stagnant flow or re-circulation regions which are the likely 

sites of thrombus formation [156, 157]. Computational methods provide an efficient way 

of analyzing performance of valves by incorporating minor changes without actually 

going through the process of manufacture and testing. Design changes can be easily 

tested and validated in a cost-effective way before prototype development and 

experimental assessment. However, hardware and software constraints force many 

simplifying assumptions on the computations.  

This chapter aims at applying an optimized computational model to compare 

performance of two valves with respect to shear stresses generated, platelet residence 

time, intensity of vortices and amount of time for which the vortices persist, all of which 

are directly related to the amount of platelet activation observed at the valves. The 

incorporated local mesh refinement enables calculation of macro-scale closure dynamics 

as well as more detailed flow features of the leakage flow regions.   
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6.2 Simulation conditions 

The two geometries of the valve used in the current simulations are shown in 

Figure 6.1. The two valves will be henceforth referred to as valve-1 and valve-2. The 2D 

geometry has been extracted from 3D models of the actual valves and the dimensions 

correspond to actual valves available in the market. The left boundary of the domain is 

symmetric while the right boundary represents the valve housing. The leaflet edge at the 

symmetry side will henceforth be referred to as the left edge and the housing side will be 

referred to and the right edge of the leaflet.  

The differences in geometry and dimensions of the valves are clearly marked in 

Figure 6.1. The first main difference is in the orientation of the valves with reference to 

the vertical axis. In the fully open position, valve-1 makes an angle of 5 o  with the 

vertical axis and valve-2 makes an angle of 0.2 o . Valve-1 sweeps and angle of 60 o  for 

complete closure while valve-2 sweeps an angle of 63.8 o . Therefore valve-2 has to sweep 

a larger angle for complete closure. The gaps between the leaflet and the valve housing 

and between the leaflets is adjusted to be 0.04 cm  for both valves. The hinge locations, 

thickness and length of the valves are slightly but not significantly different. The other 

major difference between the valves is the shape of the leaflet edge. As shown in Figure 

6.1(c) and Figure 6.1(d), valve-1 has a sharper and tapered right edge while valve-2 has a 

smooth and rounded edge. The left edge of both leaflets are similar looking with slightly 

rounded edges. The rest of the simulation conditions for the valves are exactly alike.  

The region below the valve represents the ventricular side and the region above is 

the atrium. The pressure on the top boundary on the atrial side is held fixed at 0 mmHg  

while the pressure on the bottom boundary on the ventricular side is increased linearly 
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from 0 mmHg  to 120 mmHg in a time period of 60 ms  at a constant pressure rise rate of 

2000 smmHg / .  The large angle of rotation does not provide any challenge to the 

Eulerian method since the mesh does not have to be modified to account for the rotation. 

However, the challenge lies in adequately resolving the small gaps between the two 

leaflets and the leaflet and the wall. The gap between the two leaflets as well as between 

the leaflet and the wall is specified as 0.04 cm  while the overall width of the domain 

itself is of the order of 1.0 cm .  

The fluid is assumed to be incompressible, laminar, and Newtonian with the 

density of 1056 3/ mkg  and viscosity of 0.0035 11 −− skgm , which is representative of 

human blood properties at 37 C° . At the symmetry boundary, normal velocity component 

is set to zero and all other quantities are extrapolated assuming zero normal gradient. The 

remaining boundaries are solid walls, and the standard no-slip condition is used. Note 

that the leaflet rotation is calculated from the fluid forces acting on it. Platelets are 

assumed to be point spheres of radius 2 mμ  and density same as that of blood. 

6.3 Results 

Figure 6.2 shows the closure characteristics of the two valves. Figure 6.2 (a) 

shows the orientation of the two valves with time. Valve-1 closes significantly faster than 

valve-2 because of its initial orientation and lower closure angle. Valve-1 is observed to 

close in about 28 ms  while valve-2 closes in 37 ms . The simulation is then continued till 

10 ms  after the initial closure in the rebound stage. Once the valve strikes the valve 

housing in the initial closure stage, the angular velocity is reversed as discussed in 

Section 5.3 with a resilience factor of 0.5. The valve re-opens slightly in this stage before 
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closing again. Figure 6.2 (b) shows the angular velocity of the two valves in the closure 

and rebound stages. As seen in the figure, the angular velocity at the instant of closure for 

valve-1 is about 15000 s/o  while that of valve-2 is 20000 s/o . In the initial stages of 

valve closure till about 10 o , the angular velocity is very low. After this point, there is 

exponential rise in the leaflet rotation rate. As the leaflet swings shut, it obstructs the flow 

from the ventricle to the atrium causing enormous pressure build-up on the upstream side 

of the leaflet. This causes the forces acting on the leaflet to increase correspondingly, 

leading to exponential increase of angular velocity after a certain closure angle. Added to 

that is the effect of increased ventricular pressure and increased flow from the ventricle to 

the atrium.  

The higher angular velocity of the valve-2 is due to many factors. Initially, it is 

aligned at 0.2 o  with the vertical axis. Starting from this position, due to the alignment of 

the leaflet along the flow direction, the forces causing the valve to swing shut are very 

low and correspondingly, the angular velocity is very low. From this position, as seen in 

Figure 6.2 (a), the leaflet moves very little for the first 30 ms  of the closure cycle. By the 

time, the leaflet is aligned at 5 o  with the vertical axis after 30 ms , the ventricular pressure 

has already risen to about 60 mmHg . For the same leaflet alignment for valve-1, the 

ventricular pressure is 0 mmHg . Hence the force experienced by the valve-2 in the 

exponential part of the closure curve is much higher than that experienced by valve-1. 

Valve-1 is completely closed at 60 o , while valve-2 has to swing through another 4 o  to 

close completely. The longer the leaflet stays in the exponential part of the curve, the 

higher the angular velocity rise. All these factors contribute to the much higher angular 

velocity of valve-2. Higher angular velocity at the instant of closure will cause a much 
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more forceful impact against the valve housing and a violent rebound with implications 

to higher shear stresses and consequent increased platelet activation. Figure 6.2 (c) shows 

the valve tip velocity of the valves as the leaflet swings shut. Tip velocity is dependent on 

both the angular velocity of the valve and the distance of the leaflet tip from the hinge. As 

seen in the figure, the tip velocity of valve-1 is around 2.8 sm /  and that of valve-2 is 3.6 

sm / . The tip distance of valve-2 from the hinge is slightly higher than that of valve-1. 

Figure 6.3 shows the velocity and pressure at probe points placed in the middle of 

the gap between the right edge of the leaflet and the housing. Peak velocities from Figure 

6.3 (a) at the instant of valve closure and initial stages of valve rebound are seen to reach 

as high as 25 sm /  for valve-1 and 35 sm /  for valve-2. Peak negative pressures are 

recorded at the instant of closure in Figure 6.3 (b). Overall peak values are higher for 

valve-2 because of the longer cycle time and consequential higher ventricular pressure at 

closure point. The high velocity during this period of rebound is because the energy 

which was previously responsible for valve rotation is now diverted into pushing the fluid 

through the small gap. With the high velocities built up the flow results in very large 

shear stresses and negative pressure in the gap flow during this period. This has 

implications in likelihood of cavitation and platelet activation in this stage.  

Figure 6.4(a) and Figure 6.4 (b) record maximum shear stress and minimum 

pressure recorded in the domain as the valve closes. The data has been processed to 

smooth out the peaks. But two things are immediately evident. One, that the shear stress 

and pressure recorded for valve-2 is higher than that of valve-1. Second, the shear stress 

peak stresses are much higher that that required for platelet activation. Figure 6.4 (c) 

shows a statistical representation of the activation parameter for the two valves, 10 ms  
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after the valve closure. A larger fraction of platelets are seen to have reached higher 

activations levels in the case of valve-2 as compared to valve-1.  

Figure 6.4 and Figure 6.5 shows the comparison of vorticity contours for valve-1 

and valve-2 at the same angle of orientation made with the vertical axis. Note that valve-2 

reaches the same orientation as valve-1 about 10 ms  after valve-1 does. As explained 

previously, this is because valve-1 starts out at 5 o  in the fully open position. Since valve-

2 starts out at 0.2 o  aligned with the direction of flow, the initial stages of closure are very 

slow. Judging by the vorticity patterns, the flow structure in both cases is very similar. 

Both valve exhibit similar patterns of flow separation from the leaflet edges and eventual 

orientation of flow towards the central axis. On the left edge of the leaflet, both valves 

exhibit periodic shedding of vortices. As seen in Figure 6.5 (f), which is at a time instant 

very close to the closure point, the shear layer from the left edge of the leaflet is seen to 

pull in the wall boundary layer. The only difference in the flow as seen from the Figure is 

in the intensity of the vortices. For the same angle of orientation of the leaflets, the 

intensity of vorticity is higher in the case of valve-2. The angular velocity at the instant of 

closure is also higher for valve-2. Because valve-2 closes about 10 ms  after valve-1, the 

high shear region near the right edge of the leaflet can also be expected to have persisted 

for a longer period of time compared to valve-2. Similar flow patterns seem to indicate 

that the local geometry of the leaflet edges do not seem to have much of an effect in 

changing the pattern of flow in the region. The intensity of vortices can be directly related 

to the higher angular velocity acquired by valve-2 in the closure period. 

Figure 6.6 shows the vorticity contours, shear stress and activation parameter at 

time instants, 2 ms , 4 ms  and 8 ms  after the closure instant in the rebound stage of valve-
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1. Figure 6.7 shows the same parameters as above for valve-2 at the same time instants. 

Both valve-s exhibit the highly dynamics region at the right tip of the valve where the 

shear layer from the leaflet edge interacts with the boundary layer separating from the 

housing. This is a region of high shear due to the highly rotating nature of the flow. In 

each of these instants, it can be observed that the activation parameter for valve-2 is at 

least 3 times the value of the parameter for valve-1. A comparison of the vorticity 

contours show that though the flow patterns are similar, the vorticity magnitude is higher 

in case of valve-2. In the case of valve-1, the vortices diffuse quickly and are almost 

cleared out by the end of 8 ms . For valve-2, the vortices are seen to be still strong at this 

time. Correspondingly, the shear stress is also higher for a longer period of time for 

valve-2. Overall, valve-2 exhibits about 3 time higher activation that valve-1. The higher 

vorticity magnitude shown by valve-2 at the instant of closure also contributes to its 

persistence for a longer time and consecutive higher shear stress and activation rate. 

6.4 Conclusions 

Two models of bi-leaflet mechanical heart valves are compared in terms of their 

effectiveness against platelet activation and thrombus formation. It is found that local 

geometry does not seem to have a critical effect on the flow patterns generated in the 

valve-closure cycle. Instead, the global characteristics of the valve such as closure time 

are critical in deciding the performance of the valve. Flow patterns are found to be 

qualitatively similar for both the valves compared but closure time, angular velocity and 

generated stresses are different. One of the valves has a longer closure time and higher 

magnitudes of closure velocity and consequently higher vorticity strength and shear 

stress. The difference in magnitudes of critical parameters is mainly found to be affected 
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by the initial orientation of the valve.  Therefore, the most critical parameter that affects 

the valve closure and subsequent shear stresses and platelet activation in the models 

under consideration is the initial and final orientation of the leaflets and one of the valves 

is found to exhibit three times higher platelet activation than the other. It is possible that 

knowing the exact patterns of flow, tweaking the operational parameters of the valves 

further could reduce platelet activation by significant amounts. Some recommendations 

to improve the valve performance would be (i) change the geometry of the edge of the 

leaflet so as to break up the shear-layer formed at the edge before it interacts with the 

boundary layer from the valve housing, (ii) minimize the valve tip velocity at closure by 

changing the closure pattern especially the exponential increase of velocity in the final 

stages of closure, (iii) optimize the closure time to minimize the valve tip velocity at 

closure.        
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(a) VALVE 1 (b) VALVE 2 

1.16 cm 

0.91988 cm

o5  o2.0

o60

o64

0.92545 cm 

1.19474 cm 

(c) (d) 

 

Figure 6.1. Comparison of valve geometries. (a) This is indicated as valve 1. The edge 
geometry of this valve (c) is sharper than that of valve 2 shown in (d). The angle made by 
the valves in fully open and closed positions are also indicated in the Figure. The valve 
dimensions also slightly differ from each other.   
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(a) (b) 

(c) 

 

Figure 6.2. Valve closure characteristics of valve 1 and valve 2. (a) Closure angle, (b) 
angular velocity, (c) valve tip velocity. Valve 1 closes much faster than valve 2. The 
angular velocity and valve tip velocity of valve 2 are much higher.  
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(a) (b) 

 

Figure 6.3. Flow parameters in gap between leaflet and wall through closure cycle. (a) 
Velocity, (b) shear stress and (c) pressure. Corresponding to the data in Figure 6.2, the 
flow parameters in the gaps are much higher for valve 2.  
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(a) (b) 

(c) 

 

Figure 6.4. Comparison of flow parameters between the two valves. (a) Minimum 
pressure recorded in domain. (b) Maximum shear stress. (c) Activation level as a function 
of fraction of platelets. Valve 2 shows lower negative pressures indicating higher 
likelihood of cavitation and higher shear stresses indication higher likelihood of platelet 
activation.  
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 VALVE 1                                           VALVE 2 

  

  

  

(a) 

(b) 

(c) 

 

Figure 6.5. Comparison of early closure stages of valve 1 and valve 2. Note that the 
intensity of vortices is much lower for the first valve. Qualitatively, flow patterns in both 
cases are similar.  
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 VALVE 1                                           VALVE 2 

  

   

 

(d) 

(e) 

(f) 

 

Figure 6.6. Continuation of Figure 4. Comparison of later stages of valve closure 
between valve 1 and valve 2.  
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 VORTICITY                         SHEAR STRESS                      ACTIVATION
 

 

 

 

(a) 

(b) 

(c) 

 

Figure 6.7. Rebound stages of valve 1. The first panel shows vorticity contours, the 
second shows shear stress and the third shows activation level. Qualitatively, both valve 
show similar flow behavior. However, intensity of vorticity is much higher for valve 2.  
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 VORTICITY                         SHEAR STRESS                      ACTIVATION
 

 

 

 

(a) 

(b) 

(c) 

 

Figure 6.8. Rebound stages of valve 2. The first panel shows vorticity contours, the 
second shows shear stress and the third shows activation level.  
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Contributions of the Current Thesis 

The contributions of the current thesis can be summarized as follows: 

1. A generalized and highly efficient Sharp Interface Cartesian Grid Method for 

simulating moving boundary problems has been developed in this thesis. The 

formulation allows the method to be applied to both solid-fluid and fluid-fluid 

interfaces with equal ease. The method has been extensively validated on moving 

boundary problems involving solid-fluid and fluid-fluid interfaces as well as phase-

change applications. 

2. An algebraic multigrid solver has been implemented to complement the sharp 

interface method to speed up the solution of the pressure Poisson equation. Local 

coarsening has made the re-generation of grids more efficient in the presence of 

moving boundaries. 

3. A particle tracking algorithm has been integrated with the sharp interface flow solver 

for calculations involving transport of particulate matter and their interaction with 

moving boundaries.  

4. A quadtree based local mesh refinement scheme has been formulated and 

implemented to complement the sharp-interface Cartesian grid solver in 2D and 3D to 

considerably speed-up and optimize the solution process. Mesh generation is 

automatic and solution dependent.  
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5. The local refinement scheme has been validated extensively against benchmark 

solutions on a wide variety of applications and tested for optimizing the parameters 

that control the refinement process.  

6. The above developed method has been applied to detailed analysis of flow during 

mechanical heart valve closure process. Platelets in blood have been modeled as 

particles and tracked with the particle tracking algorithm. Shear history on the 

platelets has been recorded to predict regions with a high likelihood of platelet 

activation and subsequent thrombus growth. Two geometries of mechanical vales are 

compared and the factors that affect their performance are explored.   

7.2 Future Work on the Numerical Front 

A generalized and highly efficient Sharp Interface Cartesian Grid Method for 

simulating moving boundary problems has been developed in this thesis. The formulation 

allows the method to be applied to both solid-fluid and fluid-fluid interfaces with equal 

ease. The above method has been extended by including a Local mesh refinement scheme 

which considerably reduces the mesh requirement for the solution of complex moving 

boundary problems. As the solution evolves, the mesh is adapted according to pre-set 

criteria which minimize user intervention during initial meshing. The optimum criteria 

for mesh adaptation have been explored by the solution of varied applications and 

comparison with benchmark solutions and speed-ups have been recorded. The refinement 

scheme has proved to be highly efficient in reducing memory CPU time requirement for 

several applications with some cases showing a 100 time speed-up over uniform fine 

mesh solutions.  

The solution time for the simulation of mechanical heart valve closure through the 
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entire closure and rebound phases which required several months previously has been 

reduced to the order of several days with the refinement scheme. Particularly, the 

refinement scheme has been shown to be essential for resolving the small gaps at valve 

closure. There are however, several extensions to the current method that need to be 

implemented to make it more versatile.  The immediate improvements suggested on the 

numerical aspects are as follows: 

1. Though the local refinement scheme has been implemented in 3D, the actual solution 

of moving boundary problems in 3D within the framework of sharp interface 

Cartesian grid method is still formidable in terms of the heavy mesh requirement. 

These calculations are still time intensive owing to the large scales of these problems. 

Parallelization of the code is essential for effective solution of 3D problems in real-

time. Hence parallelization of the solver is a necessity if calculations are to be 

performed with accuracy in real time. Parallel algorithms have been shown to achieve 

almost linear speed up of computational time by distributing tasks among multiple 

processors optimally with minimum communication requirements between them. To 

achieve optimum scalability, parallel simulations need the computational domain to 

be partitioned equally between the processors such that no processor will remain idle 

while it waits for the other processors to finish their job. Hence load balancing or 

domain partitioning is an important consideration when applied to locally refined 

meshes. Efficient grid partitioning and load balancing strategies have been 

investigated by many researchers for locally refined meshes [99, 100]; [50, 51] 

2. Currently, solution gradient and curvature based criteria have been adopted to control 

mesh adaptation. Every problem is different and intelligent choices of the refinement 
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control parameters may be necessary to obtain fast reliable solutions. Improvement of 

the refinement criteria are needed to make mesh adaptation more user-independent 

such that boundary layers and shear layers can be resolved effectively. Wavelet based 

criteria are being explored for this purpose. 

3. Formulation of finite volume schemes are infinitely complicated especially in 3D. 

The current work adopts a finite difference scheme for the discretization around 

interfaces. For mass conservation, this entails the mesh around immersed objects to 

be of the same refinement level. In some problems, this places severe restriction on 

the mesh refinement scheme. An improved formulation around immersed interfaces 

needs to be explored to allow mesh interfaces across immersed objects.  

4. A second order central difference scheme is used for the discretization of the 

governing equations. In certain cases, this can be highly restrictive because of its 

dispersive nature. A natural way of switching between higher order and lower order 

schemes needs to be adopted as the complexity of the problems under consideration is 

increased. 

5. The current particle tracking algorithm assumes a dilute particle loading. 

Improvement of the particle tracking algorithm is required to account for the effects 

of particle-particle interactions as well as effect of the presence o particles on the 

fluid flow. 

6. Most of the flows encountered in nature are turbulent in nature. The current method 

needs to be extended by including turbulent flow models. 

7. Extending the framework of the current method to solve compressible flow problems 

will enormously increase the range of applications that can be tackled with the code. 
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7.3 Improving the Mechanical Heart Valve Simulations 

Flow analysis of mechanical heart valve closure indicates that the interaction of 

boundary layer separating from the valve housing with the boundary layer separating 

from the valve leaflet during the rebound phase causes the formation of a region of high 

shear stress at the tip of the valve leaflet. This is also a region of highly re-circulating 

flow indicating high platelet residence time. The current simulations indicate that this is a 

region with high likelihood of platelet activation and thrombus formation. Comparison of 

performance of two commercially available replacement heart valves indicates that the 

orientation of the valve in open and closed positions and the angle through which the 

leaflet swings during closure is the major factor that affects the intensity of interaction of 

wall and leaflet boundary layers. Consecutively, this may be the single important factor 

that determines the performance of replacement valves vis-à-vis platelet activation and 

thrombus formation. Further insights into the valve performance may be obtained by 

simulating the entire valve cycle including the opening phase. Simulation of consecutive 

valve cycles may further indicate pockets of flow stagnation and persisting high shear 

stress regions.  

Previous studies [28, 29] have shown that while 2D flow analysis is able to 

capture the valve closure dynamics qualitatively, quantitative comparison will require 3D 

models. Meaningful 3D simulations, i.e. those that will capture the details of the leakage 

flow, require very dense meshes and will require parallel computing to obtain results with 

reasonable computational effort. Work is currently underway to accomplish this. 

With regard to potential sites of platelet activation, a limitation of the 2D model is 

that hinge geometry cannot be incorporated in the flow simulation. Platelet activation and 
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thrombus formation is reported to occur due to the leakage flow in the hinge region and 

much  previous research has concentrated on this aspect [47, 64, 88, 120]. The dimension 

of the hinge region is two orders of magnitude lower than the valve dimension and will 

need to be considered in the computational analysis.   

With regard to the flow field features, it has been suggested [163, 164]  that 

turbulent flow can ensue in the leakage jet and the resulting turbulent stresses can have a 

significant impact on the platelet activation and thrombus initiation.   In the present 

simulations, the average Reynolds number based on average velocity in the gap is around 

300 while that based on the peak velocity of the leakage jet was approximately 1800. 

These Reynolds numbers indicate that, at best the flow in the valve may approach the 

transitional regime for brief durations during the flow. The local velocities in the leakage 

region approach high values in confined regions for short time durations. The advent of 

turbulence for flow under such conditions is unlikely. The computations performed in the 

present work did not require any models to represent the increased dissipation due to 

turbulent Reynolds stresses. However, the finest (5-level) mesh explored was found 

necessary to capture the rather steep gradients that occur as the flow from the ventricular 

side turns the corner into the atrial side at the right edge of the leaflet.  

The present platelet activation model is purely based on the shear stress-time 

integral experienced by the platelets in flowing through the gap width between the leaflet 

edge and the valve housing. Previous studies have suggested a specific shear stress-time 

relationship for platelet activation in arterial flows [68, 73]. Tambasco et al., [134] 

suggested a minimum shear stress beyond which the platelets will be activated in the 

shear stress-time integral employed in the current thesis. However, the process of platelet 
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activation, aggregation, and thrombus initiation particularly in the presence of foreign 

surfaces such as a mechanical valve leaflet is not clear.   

There are many other factors like agonist synthesis and release by activated 

platelets and concentration, platelet-phospholipid-dependent thrombin generation, and 

thrombin inhibition by heparin that need to be incorporated to build a comprehensive 

activation model [122, 123]. Inclusion of biochemical effects on platelets accounting for 

all these factors will improve the prediction of thrombus formation. In this study, a 

particle dynamics analysis was incorporated in the computational fluid dynamic analysis 

code in order to compare the concentration of platelets and their residence time in the gap 

between the leaflet edge and the valve housing and the central gap between the leaflets 

during the closing phase of a bi-leaflet valve. It was shown that the flow dynamics and 

the behavior of the vortices are significantly different in the two regions and the platelet 

activation and deposition is more likely in the clearance gap region.    

The current particle tracking algorithm assumes a dilute flow with low platelet 

loading in blood. It neglects the effect of platelet loading on blood flow as well as 

interaction of platelets with other platelets and red blood cells. Capturing the full 

dynamics of platelets, in the presence of red blood cells of biconcave shape in appropriate 

physiological concentrations, requires multi-scale modeling that will incorporate the 

effects of the particulate nature of blood, including cell-cell and cell-surface interactions. 

Efforts are underway to incorporate multi-scale models into the macro-scale simulations.       
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